
IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED DECEMBER, 2025 1

Learning on the Fly: Rapid Policy Adaptation
via Differentiable Simulation

Jiahe Pan∗, Jiaxu Xing∗, Rudolf Reiter, Yifan Zhai, Elie Aljalbout, and Davide Scaramuzza

Abstract—Learning control policies in simulation enables
rapid, safe, and cost-effective development of advanced robotic
capabilities. However, transferring these policies to the real world
remains difficult due to the sim-to-real gap, where unmodeled
dynamics and environmental disturbances can degrade policy
performance. Existing approaches, such as domain randomiza-
tion and Real2Sim2Real pipelines, can improve policy robustness,
but either struggle under out-of-distribution conditions or require
costly offline retraining. In this work, we approach these problems
from a different perspective. Instead of relying on diverse training
conditions before deployment, we focus on rapidly adapting
the learned policy in the real world in an online fashion.
To achieve this, we propose a novel online adaptive learning
framework that unifies residual dynamics learning with real-
time policy adaptation inside a differentiable simulation. Starting
from a simple dynamics model, our framework refines the model
continuously with real-world data to capture unmodeled effects
and disturbances such as payload changes and wind. The refined
dynamics model is embedded in a differentiable simulation frame-
work, enabling gradient backpropagation through the dynamics
and thus rapid, sample-efficient policy updates beyond the reach
of classical RL methods like PPO. All components of our system
are designed for rapid adaptation, enabling the policy to adjust to
unseen disturbances within 5 seconds of training. We validate the
approach on agile quadrotor control under various disturbances
in both simulation and the real world. Our framework reduces
hovering error by up to 81% compared to L1-MPC and 55%
compared to DATT, while also demonstrating robustness in
vision-based control without explicit state estimation.

Index Terms—Machine Learning for Robot Control, Aerial
Systems: Perception and Autonomy, Continual Learning

I. Introduction

ROBOT learning through simulation has seen great suc-
cess in recent years, thanks to the rapid improvements

in computer hardware and advancements in efficient physics
simulation [1]. Simulation provides a fast, safe, and cost-
effective way to collect data and train policies, enabling
experiments that would be impractical or unsafe in the real
world. However, transferring control policies learned purely in
simulation to physical systems is challenging. While a high-
fidelity simulation model may be used, the system parameters
are often difficult to precisely identify. In addition, unmodeled

Manuscript received: August 25, 2025; Revised November 14, 2025;
Accepted December 17, 2025.

*These authors contributed equally to this work. These authors are with
the Robotics and Perception Group, Department of Informatics, University of
Zurich, Switzerland (https://rpg.ifi.uzh.ch).
Contact: jixing@ifi.uzh.ch

This work was supported by the European Union’s Horizon Europe Re-
search and Innovation Programme under grant agreement No. 101120732
(AUTOASSESS) and the European Research Council (ERC) under grant
agreement No. 864042 (AGILEFLIGHT).

Digital Object Identifier (DOI): see top of this page.

External
Disturbance

Real World DeploymentSimulated Environment

Residual (Learned)

Hybrid
Dynamics

Supervised Training

Learning

Simulation
via. Diff.

50 Hz
ControlAnalytical (Simplified)

MLP Policy

Trajectory Buffer

Data Collection

Fig. 1: Overview of the key components in our proposed approach. (right) The
policy is continuously deployed in the real world, and trajectories are collected
into a buffer. (bottom) Residual dynamics are trained using the real-world data
to refine the hybrid simulation dynamics. (left) Based on the latest simulation
dynamics, the policy is rapidly adapted via differentiable simulation.

effects such as aerodynamic turbulence, sensor noise, and
actuator delays further complicate the real-world dynamics,
thus making accurate alignment between simulation and reality
difficult to achieve. The resulting mismatch, known as the
sim-to-real gap [2], remains a central obstacle to deploying
learning-based controllers in the real world. Bridging this gap
is essential to retain the advantages of simulation while ensur-
ing that policies perform reliably under real-world complexity
and variability.

Domain randomization is a common strategy to address
this issue [3], in which simulation parameters such as dynam-
ics [4], [5], sensor noise [6], [7], and visual appearance [3],
[8] of the environment are varied during training to expose
the policy to a wide range of possible deployment scenar-
ios. By learning in diverse conditions, the agent develops
robust policies that are less likely to overfit to the specific
characteristics of a single environment. However, domain
randomization cannot exhaustively anticipate all possible real-
world conditions. Thus, when the environment shifts beyond
the randomized distribution, policy performance will strongly
degrade to out-of-distribution disturbances [9]. Beyond domain
randomization, Real2Sim2Real methods [5], [6] have shown
strong sim-to-real transfer capabilities through offline refine-
ment of the simulation model using real-world data before
retraining policies for deployment. While such methods are
effective in improving transfer, they require extensive data and
costly retraining. For example, [10] reports 75 minutes of real-
world data collection, which makes them unsuitable for rapid
online adaptation to changing conditions.

In this work, we approach these problems from another

https://rpg.ifi.uzh.ch

2 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED DECEMBER, 2025

perspective: we propose to rapidly adapt the policy to unknown
external disturbances in the real world, in an online fashion.
The core insight of the proposed framework is to integrate
online residual dynamics learning with rapid policy adapta-
tion via differentiable simulation. All system components are
designed to update both the residual dynamics and policy as
quickly as possible, ideally within a few seconds, during run-
time. In this way, the policy becomes adaptive by continuously
“overfitting” rapidly to the current environment scenario, and
paradoxically, more “generalizable” across diverse conditions.

For our pipeline, we start with a lightweight rigid-body
dynamics model and continuously refine it by learning residual
dynamics from real-world flight data. The residual-augmented
dynamics model is embedded in a differentiable simulation
framework to achieve more accurate and sample-efficient
policy adaptation. Differentiable simulation provides the key
advantage here: by allowing accurate gradients to flow through
the dynamics, it makes real-world policy adaptation more effi-
cient than classical RL approaches such as PPO [11]. Another
key innovation is our alternating optimization scheme, where
policy learning and residual model learning are interleaved
so that each batch of real-world data is used efficiently for
both dynamics refinement and control improvement through
simulation using the refined dynamics. All of these compo-
nents ensure the simulation is aligned with reality and enables
rapid, efficient policy adaptation to unknown disturbances,
even controlling directly from perceptual input.

We evaluate our proposed framework in both simulation
and real-world experiments across various environmental dis-
turbance conditions on an agile quadrotor platform, whose
nonlinear dynamics and sensitivity to aerodynamic effects
make it a challenging benchmark for adaptive control [12]. In
state-based control tasks such as hovering, where the policy
receives as input full quadrotor state information, our method
attains an average error of 0.105 m, an 81% reduction over
L1-MPC (0.552 m) and 55% over DATT [13] (0.231 m),
while ensuring stable flight under modeling errors and out-
of-distribution disturbances. In visual feature-based control,
our framework achieves similar gains, demonstrating that rapid
adaptation remains effective under partial or noisy observa-
tions - a capability unattainable with classical control methods
in the absence of state estimation.

Contributions: This work aims to enable rapid, real-time
policy adaptation on real robotic systems by integrating dif-
ferentiable simulation and online residual dynamics learning.
To the best of our knowledge, this is the first demonstration
of coupling a differentiable simulator with real-time resid-
ual learning to achieve rapid, closed-loop policy adaptation
in the real world. The framework continuously calibrates a
lightweight analytical dynamics model with real-world data,
allowing fast and stable adaptation to unseen disturbances.
An alternating optimization scheme interleaves residual model
updates and policy learning in a closed-loop manner, ensuring
each real-world sample contributes to both model fidelity
and control performance. Several design choices, including
backpropagation through the analytical model only and an
asynchronous implementation for concurrent data collection
and optimization, were critical to achieving this speed and ro-

1st update 2nd updateInitial

0.0 2.5 5.0 7.5 10.0 12.5 Time(s)

Fig. 2: Real-world trajectory tracking adaptation using our proposed approach.
The policy rapidly learns within 2 updates (10 s of flight) to compensate for the
large sim-to-real gap caused by model mismatch in pretraining (see Sec. III).

bustness. The framework supports both state-based and visual
feature-based inputs (without explicit state estimation), and we
demonstrate its effectiveness through simulated and real-world
experiments, where it outperforms both classical and learning-
based controllers under large unseen disturbances. Together,
our framework demonstrates that policies can learn and adapt
within seconds in the real world, thereby reducing reliance on
domain randomization, which can fail to capture real-world
complexity and adapt to out-of-distribution scenarios.

II. Related Works

A. Aligning Simulation with the Real-World

Closing the sim-to-real gap requires quantifying the mis-
alignment between simulation and real-world dynamics, typi-
cally through system identification or residual dynamics learn-
ing. System identification estimates parameters of an analytical
dynamics model from input–output data [14], but its rep-
resentation capacity is limited to the modeled system [15],
making it less effective for capturing complex dynamics and
disturbances. Residual dynamics learning addresses this by
directly modeling the discrepancy between analytical predic-
tions and real-world measurements. It has been applied to
improve quadrotor odometry and tracking [10], [16], learn
motor delays in quadrupeds [6], and predict residual forces
in soft robots [17].

B. Fast Policy Learning in Simulation

While traditional RL methods suffer from prohibitively
long training times, significant speed-ups can be achieved
using highly optimized physics simulation [18]. However,
these methods are limited by sample inefficiency due to the
high variance in the zeroth-order policy gradient estimates. A
recent alternative paradigm, policy learning via differentiable
simulation, uses smooth, differentiable dynamics and rewards
to enable policy learning via first-order gradients [19], offering
substantial gains in sample efficiency and training time over
RL [20]. It has been applied to direct policy parameterizations,
such as parametric curve frequencies for swimming robots [21]
and sinusoidal policies for robotic cutting [22]. For applica-
tions to neural network policies, however, unstable gradients
often limit applications to short-horizon tasks with simplified
contacts and restricted start-state variation [23], [24]. To ad-
dress this, prior work has explored enhancements such as early-
stopping simulations at contact events, truncated BPTT [25],
and reward augmentation with a learned critic [26], [27].

PAN et al.: LEARNING ON THE FLY: RAPID POLICY ADAPTATION VIA DIFFERENTIABLE SIMULATION 3

Iteration #1Iteration #1

Residual
Network
Residual
Network

 Residual
Network❄

❄Simplified
Dynamics Control

Policy

Control
Policy

External
Disturbance

Real World
Deployment

Rollout
Policy

50 Hz
Control

Hybrid Diff. Simulator

~3 seconds

Residual
Learning

Policy Training
~5 seconds

Policy Training Residual Learning

Real World Rollout

Policy Training

Real World Rollout

Real World
Dataset

Reward

Model
Fitting
Loss

State, Action

Gradient

Residual
Forces State, Action

State, Action

Gradient

Forward

Supervised
Training

Copy
Parameters

Copy Parameters

Policy Training Trajectory Data

Residual Model
Parameters

Updated Policy
MLP Parameters

Iteration #2 Iteration #3

iterative
learning
.......

Iteration #N

Fig. 3: Detailed illustration of the information flow within and between the three interleaved components of the proposed framework, including residual
dynamics learning, differentiable simulation, and policy adaptation. These components operate concurrently across multiple threads in separate ROS nodes.

C. Learning-Based Adaptive Control
Residual dynamics models have been used for online dis-

turbance estimation via offline-trained networks [28], Gaus-
sian Processes [16], or differentiable simulation–based system
identification [29]. However, these methods mainly augment
optimization-based controllers like MPC, which rely on full
state information, and do not directly extend to vision-based
control. Neural network policies have also been conditioned on
disturbance estimates [4], [13], [30], but since they are trained
offline in randomized simulations and remain fixed during
deployment, they struggle with domain shifts and unseen real-
world conditions [13], [31].

III. Methodology
Our approach consists of two phases: policy pretraining and

online adaptation. During pretraining, we train a base policy
for online adaptation using a low-fidelity analytical dynamics
model without residual dynamics. During online adaptation
(see Fig. 3), residual dynamics learning, policy adaptation, and
real-world deployment run in parallel across multiple threads,
with parameters exchanged efficiently between processes via
ROS as serialized byte strings. The residual dynamics network
is continuously updated from a rolling buffer of quadrotor
states and actions, and combined with the analytical model
to form a hybrid dynamics embedded in the differentiable
simulation for policy adaptation. The deployment loop uses
the latest policy network parameters to continuously output
control commands at 50 Hz to the on-board flight controller,
and simultaneously collects flight trajectories.
A. Differentiable Simulation Model

We model the quadrotor as a discrete-time dynamical system
with continuous state and action spaces X and U, respectively.
The system evolves according to the differentiable hybrid

dynamics model 𝑓hybrid : X × U ↦→ X which comprises
the analytical and learned residual components, and describes
the system evolution 𝑥𝑡+1 = 𝑓hybrid (𝑥𝑡 , 𝑢𝑡) over time. At time
step 𝑡, an observation model ℎ : X ↦→ O generates an
observation 𝑜𝑡 = ℎ(𝑥𝑡) ∈ O from the state 𝑥𝑡 , and is passed
as input to a deterministic and differentiable policy network
𝜋𝜙 : X ↦→ U which outputs an action 𝑢𝑡 = 𝜋𝜙 (𝑜𝑡), and finally
a deterministic, smooth and differentiable reward function
𝑟 : X × U ↦→ R emits a reward 𝑟𝑡 = 𝑟 (𝑥𝑡 , 𝑢𝑡) based on the
state-action pair. Thus, all components are fully-differentiable
and allows gradient backpropagation through the simulation.

B. Low-Fidelity Quadrotor Dynamics Model

Given the quadrotor state x consisting of position p ∈ R3,
rotation matrix R ∈ SO(3), and linear velocity v ∈ R3,
and commands u consisting of the mass-normalized collective
thrust 𝑐 ∈ R and body rates ωcmd ∈ R3, the low-fidelity,
analytical quadrotor dynamics 𝑓a is defined as

¤x =
𝑑

𝑑𝑡


p

vec(R)
v

 =


v
vec(R[ωcmd]×)

Rc + g

 ≔ 𝑓a (x,u), (1)

where [·]× denotes the skew-symmetric matrix operator and
vec(·) indicates vectorization of a matrix, c = [0, 0, 𝑐]⊤ is the
collective thrust vector, and g is the gravity vector.

C. Policy Optimization Using Analytical Gradients

The policy learning objective is to maximize the cumula-
tive task reward R(𝜙) over an 𝑁-step rollout of the policy
parameterized by 𝜙 via

max
𝜙

R(𝜙) =
𝑁−1∑︁
𝑡=0

𝑟 (𝑥𝑡 , 𝑢𝑡) =
𝑁−1∑︁
𝑡=0

𝑟 (𝑥𝑡 , 𝜋𝜙 (ℎ(𝑥𝑡))). (2)

4 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED DECEMBER, 2025

By leveraging the differentiable dynamics and reward struc-
ture, we can obtain first-order analytical policy gradients of
the objective (2) via Back-Propagation Through Time (BPTT)
(see [32] for a full derivation). The gradient and the update
rule of the policy parameters 𝜙 are given by

∇𝜙𝑅(𝜙) =
1
𝑁

𝑁−1∑︁
𝑡=0

(
𝑡∑︁

𝑖=1

𝜕𝑟𝑡

𝜕𝑥𝑡

𝑡∏
𝑗=1

(
𝑑𝑥 𝑗

𝑑𝑥 𝑗−1
) 𝜕𝑥𝑖
𝜕𝜙

+ 𝜕𝑟𝑡

𝜕𝑢𝑡

𝜕𝑢𝑡

𝜕𝜙
),

𝜙𝑘+1 = 𝜙𝑘 + 𝛼∇𝜙𝑅(𝜙𝑘),
(3)

where 𝑑𝑥 𝑗

𝑑𝑥 𝑗−1
is the derivative matrix of the system dy-

namics 𝑓hybrid, and 𝛼 is the learning rate. We build upon
an existing open-source differentiable simulator for quadro-
tors [20] written entirely in JAX to leverage both its automatic-
differentiation framework for computing the analytical policy
gradients and performing GPU-accelerated parallel simulation.

D. Residual Dynamics Learning
Given the concatenated input vector [x⊤,u⊤] ∈ R19 of

quadrotor state x⊤ = [p⊤, vec(R)⊤, v⊤] ∈ R15 and action
u⊤ = [𝑐,ω⊤

cmd] ∈ R4, an MLP network 𝑓res parameterized by θ
is trained to predict the residual acceleration ares ∈ R3, defined
as the difference between the ground-truth acceleration agt ∈
R3 measured on the real system and the theoretical acceleration
â ∈ R3 from the analytical dynamics 𝑓a (x,u) in (1). The
residual acceleration training targets are computed as ares =

agt − â. Given a batch of |B| samples {[x⊤,u⊤]𝑖 ,a𝑖
res}𝑖∈B ,

we train the model by minimizing the loss function Lres
via min𝜃 Lres = min𝜃

1
| B |

∑ | B |
𝑖=1 | |a

𝑖
res − 𝑓res ([x⊤,u⊤]𝑖;θ) | |2 +

𝛽
∑𝐿

𝑙=1 | |𝑊 𝑙 | |22, where 𝑊 𝑙 is the weight matrix of the 𝑙-th
network layer, and 𝛽 controls the regularization strength.
The loss comprises a standard MSE term and a spectral
norm regularization term, where the latter has been shown
to improve generalization beyond the training distribution [33]
by regulating the network’s Lipschitz constant [28].

E. Design Choices for Maximum Runtime Efficiency
During forward simulation, we use a hybrid dynamics model

𝑓hybrid obtained by additively combining the analytical 𝑓a
and learned residual 𝑓res dynamics models. Here, we use a
simple, low-fidelity analytical dynamics model (see Sec. III-B)
which models the quadrotor as a point-mass. The resulting
acceleration given a state and action input pair is computed
as âhybrid = â + âres, where âres is the network prediction.
The quadrotor states are simulated at 50 Hz via Runge-Kutta
4 time-integration of the dynamics using âhybrid. While the
hybrid dynamics model 𝑓hybrid composed of differentiable
analytical and learned components remains overall fully differ-
entiable, we only perform gradient backpropagation through
the analytical dynamics model and not the frozen network
to obtain the policy gradients. This was inspired by prior
work in policy learning using differentiable simulation for
both quadruped [11] and quadrotor [20] control, which showed
that combining accurate forward dynamics simulation with the
backpropagation of a surrogate gradient based on a simplified
dynamics model achieves faster runtime without impacting the
resulting policy performance. We analyze and justify the above

design choices through simulated experiments, and present and
discuss the results in Sec. IV-C.

F. Full vs. Low-Rank Policy Adaptation
We compare two existing methods of adapting a pretrained

policy: full vs. low-rank adaptation (LoRA) [34]. Full adap-
tation involves updating all parameters of the policy network,
similar to [35], whereas LoRA freezes all pretrained param-
eters and instead adapts an additive low-rank network mod-
ule [36] which forms a lower-dimensional trainable parameter
space. The latter has been shown to achieve more memory
and parameter-efficient policy adaptation using RL for task-
transfer [34] and multi-agent [37] learning. Therefore, as an
exploratory comparison, we seek to understand whether LoRA
can also be combined with sample-efficient policy learning
using differentiable simulation to effectively adapt a pretrained
policy to unknown environmental disturbances.

IV. Experiments
A. Experimental Setup

1) Task and Reward Definitions: We evaluate our approach
on quadrotor stabilizing hover and trajectory tracking. For sta-
bilizing hover, the policy is required to regulate the quadrotor
towards a goal pdes and maintain it at all times, which is non-
trivial given the quadrotor’s non-linear and unstable dynamics.
We evaluate both a state-based policy which receives obser-
vations o = [p,R, v]⊤ at each time step, and an end-to-end
visual feature-based policy which only receives the projected
pixel coordinates of seven 3D keypoints from the past five time
steps and the last three actions. For real-world experiments,
the 3D keypoints are simulated in a hardware-in-the-loop
style using quadrotor state estimates from a motion-capture
system. Our training setup closely follows the open-source
environment setup in [20]. Trajectory tracking requires fol-
lowing a reference trajectory defined as a time-parameterized
sequence of quadrotor states, with policy training done in
a state-based setting. As shown in Fig. 4, we generate two
smooth trajectories, Circle and Figure-8, and a non-smooth 5-
Point Star trajectory featuring a highly discontinuous velocity
profile. For both tasks, the reward at each time step 𝑡 is
defined as a sum of position, velocity, and actuation rewards
𝑟𝑡 = 𝑟

pos
𝑡 + 𝑟vel

𝑡 + 𝑟act
𝑡 . For stabilizing hover, the individual

reward terms are 𝑟
pos
𝑡 = −1.0 · 𝐿H (5 · (p𝑡 − pdes)), 𝑟vel

𝑡 =

−0.1 · 𝐿H (v𝑡) −0.1 · 𝐿H (ω𝑡), and 𝑟act
𝑡 = −0.5 · 𝐿H (u𝑡 −uhover),

where 𝐿H is the Huber loss, and uhover = [9.81, 0, 0, 0]⊤
is the mass-normalized action required to counteract grav-
ity. For trajectory tracking, the individual reward terms are
𝑟

pos
𝑡 = −1.0 · 𝐿H (p𝑡 − pref

𝑡), 𝑟vel
𝑡 = −1.0 · 𝐿H (v𝑡 − vref

𝑡),

−0.5

1.5 −1.5

0.5

0.8

1.0

X [m]

Y [m]

Z [m]

(a) Circle

−0.5
1.5

−1.5

0.5

0.8

1.0

X [m]

Y [m]

Z [m]

(b) Figure-8

−0.5

1.5 −1.5

0.5

0.8

1.0

X [m]

Y [m]

Z [m]

(c) 5-Point Star
Fig. 4: The Circle, Figure-8 and 5-Point Star reference trajectories, with
periods of 3 s, 5 s and 6 s respectively. All trajectories lie in the horizontal
xy-plane 1 m above the ground, and start at the point (0, 0, 1) m.

PAN et al.: LEARNING ON THE FLY: RAPID POLICY ADAPTATION VIA DIFFERENTIABLE SIMULATION 5

TABLE I: Average steady-state error (in m) from the hovering target across 8
rollouts. The errors of the two best-performing methods for each disturbance
condition are highlighted in green and orange.

Method No Dist. Small Dist. Large Dist.

Base DiffSim 0.128 ± 0.004 0.328 ± 0.001 1.228 ± 0.073
L1-MPC 0.091 ± 0.052 0.134 ± 0.073 0.552 ± 0.130

DATT (PPO) 0.013 ± 0.004 0.009 ± 0.005 0.231 ± 0.004
Ours 0.015 ± 0.001 0.008 ± 0.002 0.105 ± 0.007

Ours (LoRA) 0.023 ± 0.002 0.015 ± 0.004 0.125 ± 0.002

and 𝑟act
𝑡 = −0.1 · 𝐿H (u𝑡 − uhover), where pref

𝑡 and vref
𝑡 are

respectively the reference position and velocity at time 𝑡.
2) Pretraining Phase: We parameterize the policy as an

MLP with two 512-dim hidden layers. For both state-based
hovering and trajectory tracking, we train the base policy
from random initialization for 300 epochs across 100 parallel
environments. Each epoch lasts 3 seconds or 150 simulation
steps. For visual feature-based hovering, we use the initial-
ization approach from [20] to first train a neural network
on a state-representation learning task and use the learned
parameters to partially initialize the policy network. This has
been shown to improve convergence and sample efficiency in
policy learning [38]. We refer the reader to [20] for details on
this initialization method. We then train the partially initialized
policy for 500 epochs across 300 parallel environments.

3) Online Adaptation Phase: The quadrotor states and
actions are continuously recorded into a rolling history buffer
at 50 Hz and are used to train the residual dynamics network.
For stabilizing hover and trajectory tracking, we use history
buffer sizes of 100 and 250, equivalent to 2 and 5 seconds of
trajectory history respectively. For residual dynamics learning,
we continuously refine an ensemble of 3 networks, each
with two 128-dim hidden layers and initialized using different
random seeds, and use the empirical mean prediction from
all models as the final predicted residual acceleration for a
given input. Empirically, we found this to effectively reduce
the prediction variance arising from epistemic uncertainty due
to the limited samples in the data buffer. For LoRA, we follow
the original implementation and initialization in [39], and use
ranks of 4, 10 and 1 for the three weight matrix layers of the
policy network respectively, and a constant scale of 4 across
all layers. We run residual dynamics learning every 3 seconds
and train the ensemble networks in parallel for 100 iterations.
Policy adaptation is run every 5 seconds, and we train the
state-based policy with 10 parallel simulated environments for
30 epochs and the vision-based policy with 30 environments
for 50 epochs. These values were empirically found to provide
a good balance between training time and policy performance.

4) Baselines Methods: We compare against a state-of-the-
art learning-based adaptive control method, Deep Adaptive
Tracking Control (DATT) [13], which uses the popular model-
free RL algorithm PPO with domain randomization and online
L1 adaptive control-based disturbance estimation. For quadro-
tor control, this method has been shown to outperform Rapid
Motor Adaptation (RMA) [4], which is a similar approach but
instead uses a learned encoder for disturbance estimation. We
used the open-source implementation of [13] and the exact
same training procedure and hyperparameters to train both
state-based hovering and trajectory tracking policies using PPO

for 20 million simulation steps. Using their original domain
randomization method, we simulated 3-dimensional acceler-
ation disturbances as random walks within the bounds +/-
[1, 1, 1] m/s2. We also compare against an adaptive Nonlinear
MPC controller (L1-MPC) as implemented in [13], which uses
a Model Predictive Path Integral (MPPI) formulation and the
same L1 adaptive control-based disturbance estimation as in
DATT. Additionally, we include our pretrained base policy
(Base DiffSim) without online adaptation for comparison.

B. Experimental Results
We used a realistic quadrotor simulator [12] equipped

with the BEM model for aerodynamic effects and high-
frequency simulation of controller dynamics. We simu-
lated three levels of constant, uniform acceleration distur-
bances: [0, 0, 0] m/s2 (none), [0.5, 0.5, 0.5] m/s2 (small), and
[2, 2, 2] m/s2 (large). The first two conditions are within the
domain randomization range used for DATT training, whereas
the third condition was deliberately chosen to be out-of-
distribution to evaluate its generalization capabilities. All ex-
periments (simulated and real-world) were run using an Nvidia
RTX 4090 GPU (24 GB VRAM) with an Intel 14900KF CPU.

1) Performance Comparison to Baseline Approaches: For
the state-based stabilizing hover task, we ran each method
under all disturbance conditions from a set of 8 different
starting positions around the hovering target, and used the
final steady-state error as the performance metric. To ensure
a fair comparison, we continued running each method until
no further accuracy improvements were observed. This was
found to be approximately 10 seconds for all baseline methods
as they do not require any policy adaptation, and around 30
seconds for our approach (both state and vision-based) for a
few learning steps to take place. As summarized in Tab. I,
results show that our method consistently exhibits superior
or comparable performance to the baselines. Fig. 5a illustrates
that our method rapidly adapts the policy to compensate for the
large disturbances within 2-3 adaptation steps. DATT performs
well under both the none and small disturbance scenarios
which are within its training distribution, but struggles to adapt
to the larger, out-of-distribution disturbance.

For visual feature-based hovering, the baseline methods
would require an additional state estimation module, which
limits the ability to clearly benchmark their performance
without confounding errors from the state estimator, and are
thus excluded from the comparison. As shown in Tab. III,
our visual feature-based approach resulted in larger errors
than our state-based approach. We empirically observed that
adaptation of the visual feature-based policy is less stable
than the state-based counterpart and may require more policy
learning epochs or update steps, most likely due to partial state
observability and sample inefficiency in learning vision-based
control. More detailed experiments and performance results
are provided in the supplementary material.

For trajectory tracking, we recorded 60-second rollouts and
computed the average tracking error (m) within the last 10-
second window as the performance metric. As shown in
Tab. II, our approach achieves comparable performance to the
baselines across all trajectories and disturbance conditions.

6 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED DECEMBER, 2025

1.25

1.50

1.75

X
Ref X

−0.25

0.00

0.25

Y
Ref Y

0 2 4 6 8 10 12 14
Time (s)

1.4

1.6

Z
Ref Z

Po
si

tio
n

(m
)

(a) State-based hovering adaptation to constant large disturbance.

1.0
0.5

1.5

2.0

X
Ref X

−0.5
2.0

0.0 Y
Ref Y

10 20 40 50 6030
Time (s)

1.0 0

1.5 Z
Ref Z

Po
si

tio
n

(m
)

(b) Continuous state-based hovering adaptation to varying disturbances.

Fig. 5: Online adaptation of a state-based hovering policy to constant (a) and time-varying (b) disturbances. Vertical dashed lines indicate policy update steps
which occur every 5 s. Shaded regions represent the error from the hovering target. In (b), each pair of solid vertical line and arrow indicates a direction
reversal of the disturbance and the new direction.

TABLE II: Average tracking errors (in m) for three different trajectories
(Circle, Figure-8, and 5-Point Star). The errors of the two best-performing
methods for each disturbance condition are highlighted in green and orange.

Trajectory Method No Dist. Small Dist. Large Dist.

Circle

Base DiffSim 0.365 ± 0.124 0.571 ± 0.091 1.479 ± 0.213
L1-MPC 0.113 ± 0.027 0.096 ± 0.063 0.410 ± 0.155

DATT (PPO) 0.058 ± 0.016 0.040 ± 0.024 crash
Ours 0.167 ± 0.048 0.135 ± 0.101 0.349 ± 0.175

Ours (LoRA) 0.129 ± 0.051 0.159 ± 0.043 0.326 ± 0.061

Figure-8

Base DiffSim 0.313 ± 0.087 0.492 ± 0.155 1.363 ± 0.382
L1-MPC 0.109 ± 0.063 0.121 ± 0.025 0.281 ± 0.097

DATT (PPO) 0.078 ± 0.037 0.082 ± 0.046 crash
Ours 0.068 ± 0.040 0.045 ± 0.03 0.137 ± 0.098

Ours (LoRA) 0.069 ± 0.047 0.059 ± 0.043 0.110 ± 0.037

5-Point Star

Base DiffSim 0.453 ± 0.190 0.467 ± 0.236 0.844 ± 0.389
L1-MPC 0.295 ± 0.086 0.218 ± 0.111 0.417 ± 0.086

DATT (PPO) 0.087 ± 0.059 0.102 ± 0.093 crash
Ours 0.126 ± 0.094 0.133 ± 0.075 0.211 ± 0.116

Ours (LoRA) 0.129 ± 0.069 0.130 ± 0.099 0.231 ± 0.076

Here, our method exhibits consistent responsiveness to both
smooth and non-smooth references. In particular, for the 5-
Point Star, our method achieves comparable tracking accu-
racy as DATT, which has demonstrated strong capabilities in
tracking non-smooth, dynamically infeasible trajectories [13].
We observed that our method is able to rapidly adapt and
achieve much improved tracking accuracy after only 3-4 policy
update steps. For DATT, consistent with findings from state-
based hovering, it fails to generalize to the out-of-distribution
disturbances and results in crashes for all reference trajectories.

Finally, we observe that using low-rank policy adaptation
with our approach achieved comparable performances to using
full adaptation across all tasks and disturbance conditions. This
demonstrates that LoRA can indeed be effectively combined
with the differentiable simulation framework to achieve both
sample- and parameter-efficient policy adaptation, where the
latter may be particularly advantageous for fine-tuning pre-

TABLE III: Average steady-state error (in m) from the hovering target across
8 rollouts. The errors of the two best-performing methods for each disturbance
condition are highlighted in green and orange.

Method No Dist. Small Dist. Large Dist.

Base DiffSim (Vision) 0.133 ± 0.009 0.404 ± 0.039 1.383 ± 0.176
Ours (State) 0.015 ± 0.001 0.008 ± 0.002 0.105 ± 0.007

Ours (Vision) 0.082 ± 0.009 0.099 ± 0.021 0.207 ± 0.041
Ours (Vision, LoRA) 0.084 ± 0.014 0.111 ± 0.024 0.205 ± 0.048

trained policy networks that are significantly larger than the
MLP used in our experiments.

2) Computational and Sample Efficiency Analysis: We an-
alyze and compare the sample and computational efficiency
of our approach against DATT for state-based tasks. For
our approach, policy pretraining uses 300 epochs across 100
environments, which is equivalent to 4.5 million simulation
steps in total, and takes approximately 15 seconds. Empirically,
we observed that good-performing initial policies can in fact
be obtained using fewer epochs and environments, thanks to
the low-variance first-order policy gradients from differentiable
simulation. For online adaptation, each residual dynamics
learning step (100 iterations) takes approximately 2 seconds,
and each policy adaptation step runs for 30 epochs across
10 environments (or 45k simulation steps) and takes about
1.5 seconds. Here, with only 3 adaptation steps, which is
equivalent to 4.5 seconds of policy training in wall time,
we already observe significant performance improvements for
both hovering and tracking. In comparison, DATT trains the
policy for 20 million simulation steps, which takes around
2 hours, and requires no further training at runtime. For
DATT, we also observed slower convergence to lower rewards
when training with larger domain randomization, which is
likely a result of the performance-generalization trade-off [40],
possibly exacerbating the high variance in the policy gradient
estimates. In summary, our approach enables more efficient
compute usage by simplifying initial policy training without
domain randomization or curricula, and by supporting sample-
and compute-efficient online adaptation to out-of-distribution
scenarios where domain randomization fails to generalize.

3) Continuous Adaptation to Time-Varying Disturbances:
We demonstrate the ability of our method to continuously
adapt policies to unknown time-varying disturbances, using
the realistic quadrotor simulator [12]. Here, we show an ex-
ample of continuously adapting a state-based hovering policy
under uniform, time-varying acceleration disturbance given by
±[0.5, 0.5, 0.5] m/s2, which reverses its direction every 15 s.
As shown in Fig. 5b, our approach rapidly adapts the state-
based policy within 2 adaptation steps to adjust for each
disturbance change, with the policy behavior remaining stable
throughout the entire process. We observed the continuous
adaptation of a visual feature-based hovering policy to be

PAN et al.: LEARNING ON THE FLY: RAPID POLICY ADAPTATION VIA DIFFERENTIABLE SIMULATION 7

high-fid,
res-fwd

high-fid,
res-fwd,
res-back

low-fid,
res-fwd

low-fid,
res-fwd,
res-back

0
2
4
6
8

10
12

Tr
ai

ni
ng

Ti
m

e
(s

)

(a) Training time

base
policy

(no adapt)

high-fid,
res-fwd

high-fid,
res-fwd,
res-back

low-fid,
res-fwd

low-fid,
res-fwd,
res-back

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

E
rr

or
(m

)

(b) Final steady-state error
Fig. 6: (left) Policy training times using four different simulation configura-
tions. (right) Resulting policy performances compared against the base policy
performance. Error bars show ±3 standard deviations of the error distribution
across 8 rollouts for each configuration.

less stable than its state-based counterpart, consistent with
our previous findings. For continuous trajectory tracking adap-
tation experiments, we provide detailed visualizations in the
supplementary material.

C. Optimizing Runtime Efficiency and Performance

We conducted an analysis using the state-based stabilizing
hover task to justify two key design choices in the differen-
tiable simulation pipeline: 1) low-fidelity analytical dynamics
model for simulation, and 2) gradient backpropagation only
through the analytical dynamics model. Given that a key ob-
jective is to minimize runtime while maintaining policy perfor-
mance, we compared the training time and policy performance
for each design choice. We used the same realistic quadrotor
simulator [12] and added a constant uniform acceleration
disturbance of 2 m/s2 in the positive x-axis direction. We first
collected 50 3-second rollout trajectories of the base hovering
policy from random starting positions around the target, and
then used the generated residual samples to train a single
residual dynamics network for 200 epochs. Finally, we adapted
the base policy by running 100 epochs of policy training across
100 parallel environments, and evaluated the final steady-state
errors from the hovering target across 8 rollout trajectories.

We first compared using the low-fidelity (low-fid) dynamics
model (1) against using a high-fidelity model (high-fid), which
simulates body and rotor drag effects, rotor thrust maps,
and low-level controller dynamics, as the analytical dynamics
model together with the residual dynamics network for forward
simulation (res-fwd). We found that using the low-fidelity
model achieves approximately 2-times faster training (see
Fig. 6a) than using the high-fidelity model, while the achieved
policy performances by both methods were very comparable
(see Fig. 6b). For gradient backpropagation, we found that in
addition to backpropagating through the analytical dynamics
model, also performing backpropagation through the learned
residual dynamics network (res-back) increases training time

TABLE IV: Quadrotor parameters for simulation and real-world experiments.

Param. Small Quadrotor Large Quadrotor
Mass [kg] 0.19 0.60
Maximum Thrust [N] 14.00 34.00
Arm Length [m] 0.06 0.13
Inertia [g m2] [0.14, 0.17, 0.21] [2.41, 1.80, 3.76]
Motor Time Constant [s] 0.025 0.033

by approximately 30% without providing clear benefits to the
policy performance. This is consistent with previous find-
ings [11], [20] that combining accurate forward simulation
with a surrogate gradient which points in approximately the
same direction as the true gradient vector accelerates policy
training without impacting the resulting policy performance.

D. Real World Validation
We conducted real-world experiments using the same tasks

as the simulated experiments and the same pretraining and on-
line adaptation procedures. A motion-capture system provides
quadrotor state estimation at 100 Hz to the off-board worksta-
tion, which computes and sends commands to the on-board
controller at 50 Hz. We used two quadrotors adapted from the
Agilicious platform [12]: a small lightweight quadrotor and
a larger, heavier one with different dynamical properties (see
Tab. IV). Moreover, we modified the small quadrotor by rigidly
attaching to it a quadrotor stand from below, increasing its
mass from 190 g to 260 g by approximately 37% and altering
its inertial properties. Finally, we used a fan to create wind
disturbances, resulting in complex, state-dependent forces on
the modified quadrotor due to its highly imbalanced and non-
uniform drag profile. Both the existing sim-to-real gap and the
extra disturbances contribute to significant out-of-distribution
dynamics that were unseen during policy pretraining.

Fig. 7a shows state-based hovering adaptation on the mod-
ified small quadrotor under a diagonal wind disturbance.
Despite the more complex and unstable real-world disturbance
forces compared to the constant uniform disturbance in simu-
lation, our method still enables the policy to rapidly adapt with
2-3 policy update steps to compensate for disturbances. Sim-
ilar results were observed for visual feature-based hovering,
where the adaptation process appeared less stable than state-
based hovering, which is consistent with our findings from
simulated experiments. Real-world experiments also show that
our approach achieves accurate trajectory tracking under added
mass, wind, and significant model mismatches. In particular,
our method achieves accurate tracking of the non-smooth 5-
Point Star under complex wind disturbances (see Fig. 7b).
Moreover, Fig. 7c shows one particular experiment where a

1.0

1.5

2.0

X
Ref X

−0.5

0.0

0.5

Y
Ref Y

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Time (s)

1.0

1.5

2.0

Z
Ref Z

Po
si

tio
n

(m
)

(a) State-based hover with added mass and wind.

0

2

X
Ref X

−1

0

1

Y
Ref Y

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Time (s)

0.75

1.00

1.25

Z
Ref Z

Po
si

tio
n

(m
)

(b) 5-Point Star tracking with added wind.

0

2
X
Ref X

−0.5

0.0

0.5

Y
Ref Y

0 5 10 15 20 25 30 35
Time (s)

0.75

1.00

1.25

Z
Ref Z

Po
si

tio
n

(m
)

(c) Figure-8 tracking on the large quadrotor.
Fig. 7: Rapid policy adaptation using our proposed approach in the real world. Vertical dashed lines indicate policy update steps which occur every 5 s. Shaded
regions represent the error from the reference.

8 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED DECEMBER, 2025

Figure-8-tracking policy was deployed on the large quadrotor.
Despite the poor initial tracking and state-space exploration
caused by the large sim-to-real gap, the policy quickly adapts
and achieves much improved tracking within just a few policy
update steps. Videos and visualizations of real-world experi-
ments are provided in the supplementary material.

V. Conclusion
We propose a novel rapid policy adaptation framework

combining online residual dynamics learning from real-world
flight data and sample-efficient policy learning via differen-
tiable simulation. With all system components designed for
rapid adaptation, we demonstrate the possibility to adapt both
state and visual feature-based policies to unknown disturbances
within several seconds. One limitation of our framework lies
in the tightly-coupled dependencies between data collection
via policy rollout and policy learning using learned residual
dynamics from the collected data. The quality and rate of
convergence may be affected by biases or noise in the learned
residual dynamics. Thus, future work will explore uncertainty-
driven data collection where the policy is augmented by active
exploration to simultaneously improve task performance and
reduce uncertainty in the real-world dynamics.

References
[1] J. Collins, S. Chand, A. Vanderkop, and D. Howard, “A review of physics

simulators for robotic aapplications,” IEEE Access, 2021.
[2] E. Aljalbout, J. Xing, A. Romero, I. Akinola, C. R. Garrett, E. Heiden,

A. Gupta, T. Hermans, Y. Narang, D. Fox, et al., “The reality gap in
robotics: Challenges, solutions, and best practices,” Annual Review of
Control, Robotics, and Autonomous Systems, vol. 9, 2025.

[3] J. Tobin, R. Fong, A. Ray, J. Schneider, W. Zaremba, and P. Abbeel,
“Domain randomization for transferring deep neural networks from
simulation to the real world,” in 2017 IEEE/RSJ Int. Conf. Intell. Robots
Syst. IEEE, 2017, pp. 23–30.

[4] A. Kumar, Z. Fu, D. Pathak, and J. Malik, “Rma: Rapid motor adaptation
for legged robots,” in Robotics: Science and Systems, 2021.

[5] E. Kaufmann, L. Bauersfeld, A. Loquercio, M. Müller, V. Koltun, and
D. Scaramuzza, “Champion-level drone racing using deep reinforcement
learning,” Nature, vol. 620, no. 7976, pp. 982–987, Aug 2023.

[6] J. Hwangbo, J. Lee, A. Dosovitskiy, D. Bellicoso, V. Tsounis, V. Koltun,
and M. Hutter, “Learning agile and dynamic motor skills for legged
robots,” Science Robotics, vol. 4, no. 26, p. eaau5872, 2019.

[7] OpenAI, I. Akkaya, M. Andrychowicz, M. Chociej, M. Litwin,
B. McGrew, A. Petron, A. Paino, M. Plappert, G. Powell, R. Ribas,
J. Schneider, N. Tezak, J. Tworek, P. Welinder, L. Weng, Q. Yuan,
W. Zaremba, and L. Zhang, “Solving rubik’s cube with a robot hand,”
2019. [Online]. Available: https://arxiv.org/abs/1910.07113

[8] J. Xing, L. Bauersfeld, Y. Song, C. Xing, and D. Scaramuzza, “Con-
trastive learning for enhancing robust scene transfer in vision-based agile
flight,” in 2024 IEEE Int. Conf. Robot. Autom. IEEE, 2024.

[9] H. Wang, J. Xing, N. Messikommer, and D. Scaramuzza, “Environment
as policy: Learning to race in unseen tracks,” in 2025 IEEE Int. Conf.
Robot. Autom. IEEE, 2025, pp. 11 333–11 339.

[10] L. Bauersfeld, E. Kaufmann, P. Foehn, S. Sun, and D. Scaramuzza,
“Neurobem: Hybrid aerodynamic quadrotor model,” in Robotics: Science
and Systems, 2024.

[11] Y. Song, S. bae Kim, and D. Scaramuzza, “Learning quadruped locomo-
tion using differentiable simulation,” in 8th Conf. Robot. Learn., 2024.

[12] P. Foehn, E. Kaufmann, A. Romero, R. Penicka, S. Sun, L. Bauersfeld,
T. Laengle, G. Cioffi, Y. Song, A. Loquercio, et al., “Agilicious:
Open-source and open-hardware agile quadrotor for vision-based flight,”
Science Robotics, vol. 7, no. 67, p. eabl6259, 2022.

[13] K. Huang, R. Rana, A. Spitzer, G. Shi, and B. Boots, “Datt: Deep
adaptive trajectory tracking for quadrotor control,” in Conference on
Robot Learning. PMLR, 2023, pp. 326–340.

[14] L. Ljung, System Identification (2nd ed.): Theory for the User. USA:
Prentice Hall PTR, 1999.

[15] E. Heiden, D. Millard, E. Coumans, Y. Sheng, and G. S. Sukhatme,
“Neuralsim: Augmenting differentiable simulators with neural net-
works,” in 2021 IEEE Int. Conf. Robot. Autom. IEEE, 2021.

[16] G. Torrente, E. Kaufmann, P. Föhn, and D. Scaramuzza, “Data-driven
mpc for quadrotors,” IEEE Robotics and Automation Letters, 2021.

[17] J. Gao, M. Y. Michelis, A. Spielberg, and R. K. Katzschmann, “Sim-
to-real of soft robots with learned residual physics,” IEEE Robotics and
Automation Letters, 2024.

[18] J. Eschmann, D. Albani, and G. Loianno, “Learning to fly in seconds,”
IEEE Robotics and Automation Letters, 2024.

[19] R. Newbury, J. Collins, K. He, J. Pan, I. Posner, D. Howard, and
A. Cosgun, “A review of differentiable simulators,” IEEE Access, 2024.

[20] J. Heeg, Y. Song, and D. Scaramuzza, “Learning quadrotor control from
visual features using differentiable simulation,” in 2025 Int. Conf. Robot.
Autom. IEEE, 2025.

[21] E. Nava, J. Z. Zhang, M. Y. Michelis, T. Du, P. Ma, B. F. Grewe, W. Ma-
tusik, and R. K. Katzschmann, “Fast aquatic swimmer optimization with
differentiable projective dynamics and neural network hydrodynamic
models,” in International Conference on Machine Learning, 2022.

[22] E. Heiden, M. Macklin, Y. Narang, D. Fox, A. Garg, and F. Ramos,
“Disect: A differentiable simulation engine for autonomous robotic
cutting,” in Robotics: Science and Systems, 2021.

[23] M. Geilinger, D. Hahn, J. Zehnder, M. Bächer, B. Thomaszewski, and
S. Coros, “Add: Analytically differentiable dynamics for multi-body
systems with frictional contact,” ACM Transactions on Graphics (TOG),
vol. 39, no. 6, pp. 1–15, 2020.

[24] J. Xu, S. Kim, T. Chen, A. R. Garcia, P. Agrawal, W. Matusik, and
S. Sueda, “Efficient tactile simulation with differentiability for robotic
manipulation,” in Conference on Robot Learning, 2023.

[25] J. Xu, V. Makoviychuk, Y. Narang, F. Ramos, W. Matusik, A. Garg,
and M. Macklin, “Accelerated policy learning with parallel differentiable
simulation,” in ICLR, 2022.

[26] I. Georgiev, K. Srinivasan, J. Xu, E. Heiden, and A. Garg, “Adaptive
horizon actor-critic for policy learning in contact-rich differentiable
simulation,” in Proceedings of the 41st International Conference on
Machine Learning, 2024, pp. 15 418–15 437.

[27] J. Y. Luo, Y. Song, V. Klemm, F. Shi, D. Scaramuzza, and M. Hutter,
“Residual policy learning for perceptive quadruped control using differ-
entiable simulation,” in 2025 Int. Conf. Robot. Autom. IEEE, 2025.

[28] G. Shi, X. Shi, M. O’Connell, R. Yu, K. Azizzadenesheli, A. Anand-
kumar, Y. Yue, and S.-J. Chung, “Neural lander: Stable drone landing
control using learned dynamics,” in 2019 IEEE Int. Conf. Robot. Autom.
IEEE, 2019, pp. 9784–9790.

[29] S. Chen, K. Werling, A. Wu, and C. K. Liu, “Real-time model predictive
control and system identification using differentiable simulation,” IEEE
Robotics and Automation Letters, vol. 8, no. 1, pp. 312–319, 2022.

[30] M. O’Connell, G. Shi, X. Shi, K. Azizzadenesheli, A. Anandkumar,
Y. Yue, and S.-J. Chung, “Neural-fly enables rapid learning for agile
flight in strong winds,” Science Robotics, vol. 7, no. 66, 2022.

[31] J. Xing, I. Geles, Y. Song, E. Aljalbout, and D. Scaramuzza, “Multi-
task reinforcement learning for quadrotors,” in IEEE Robotics and
Automation Letters (RA-L). IEEE, 2024.

[32] L. Metz, C. D. Freeman, S. S. Schoenholz, and T. Kachman, “Gradients
are not all you need,” arXiv preprint arXiv:2111.05803, 2021.

[33] P. L. Bartlett, D. J. Foster, and M. J. Telgarsky, “Spectrally-normalized
margin bounds for neural networks,” Advances in Neural Information
Processing Systems, vol. 30, 2017.

[34] L. Bo, T. Zhang, H. Zhang, J. Hong, M. Liu, C. Zhang, and B. Liu, “3d
uav path planning in unknown environment: A transfer reinforcement
learning method based on low-rank adaption,” Advanced Engineering
Informatics, vol. 62, p. 102920, 2024.

[35] J. Xing, A. Romero, L. Bauersfeld, and D. Scaramuzza, “Bootstrapping
reinforcement learning with imitation for vision-based agile flight,” in
8th Conf. Robot. Learn., 2024.

[36] Z. Han, C. Gao, J. Liu, J. Zhang, and S. Q. Zhang, “Parameter-efficient
fine-tuning for large models: A comprehensive survey,” Transactions on
Machine Learning Research, 2024.

[37] B. Zhang, A. Kapoor, and M. Sun, “Low-rank agent-specific
adaptation (lorasa) for multi-agent policy learning,” arXiv preprint
arXiv:2502.05573, 2025.

[38] T. De Bruin, J. Kober, K. Tuyls, and R. Babuška, “Integrating state
representation learning into deep reinforcement learning,” IEEE Robotics
and Automation Letters, vol. 3, no. 3, pp. 1394–1401, 2018.

[39] E. J. Hu, Y. Shen, P. Wallis, Z. Allen-Zhu, Y. Li, S. Wang, L. Wang,
W. Chen, et al., “Lora: Low-rank adaptation of large language models.”
ICLR, vol. 1, no. 2, p. 3, 2022.

[40] K. Zhou, Z. Liu, Y. Qiao, T. Xiang, and C. C. Loy, “Domain general-
ization: A survey,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 45, no. 4, pp. 4396–4415, 2022.

https://arxiv.org/abs/1910.07113

	Introduction
	Related Works
	Aligning Simulation with the Real-World
	Fast Policy Learning in Simulation
	Learning-Based Adaptive Control

	Methodology
	Differentiable Simulation Model
	Low-Fidelity Quadrotor Dynamics Model
	Policy Optimization Using Analytical Gradients
	Residual Dynamics Learning
	Design Choices for Maximum Runtime Efficiency
	Full vs. Low-Rank Policy Adaptation

	Experiments
	Experimental Setup
	Task and Reward Definitions
	Pretraining Phase
	Online Adaptation Phase
	Baselines Methods

	Experimental Results
	Performance Comparison to Baseline Approaches
	Computational and Sample Efficiency Analysis
	Continuous Adaptation to Time-Varying Disturbances

	Optimizing Runtime Efficiency and Performance
	Real World Validation

	Conclusion
	References

