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Abstract—Shared control systems aim to combine human and
robot abilities to improve task performance. However, achieving
optimal performance requires that the robot’s level of assistance
adjusts the operator’s cognitive workload in response to the task
difficulty. Understanding and dynamically adjusting this balance
is crucial to maximizing efficiency and user satisfaction. In this
paper, we propose a novel benchmarking method for shared
control systems based on Fitts’ Law to formally parameterize
the difficulty level of a target-reaching task. With this we
systematically quantify and model the effect of task difficulty
(i.e. size and distance of target) and robot autonomy on task
performance and operators’ cognitive load and trust levels. Our
empirical results (N=24) not only show that both task difficulty
and robot autonomy influence task performance, but also that
the performance can be modelled using these parameters, which
may allow for the generalization of this relationship across more
diverse setups. We also found that the users’ perceived cognitive
load and trust were influenced by these factors. Given the
challenges in directly measuring cognitive load in real-time, our
adapted Fitts’ model presents a potential alternative approach to
estimate cognitive load through determining the difficulty level
of the task, with the assumption that greater task difficulty
results in higher cognitive load levels. We hope that these insights
and our proposed framework inspire future works to further
investigate the generalizability of the method, ultimately enabling
the benchmarking and systematic assessment of shared control
quality and user impact, which will aid in the development of
more effective and adaptable systems.

Index Terms—Human-Robot Collaboration, Acceptability and
Trust, Telerobotics and Teleoperation, Benchmark

I. INTRODUCTION

Teleoperation is a common form of Human-Robot Collabo-
ration (HRC) used in contexts where autonomous operation
is not feasible and human guidance is essential [1]. From
satellite maintenance to medical surgery, teleoperation tasks
often require efficient execution of precise movements between
multiple targets using the robot arm’s end-effector. As a
result, operators are often burdened with high cognitive loads
[2] when completing these tasks. To address this, shared
control systems have been developed [3]–[5] that leverage the
complementary strengths of humans and robots to enhance
task performance and reduce user workload. Here, a key factor
is the task difficulty (i.e. how challenging the task is), which
often relates to characteristics of the teleoperation task such
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as the required accuracy and the time constraints. Previous
works have shown that task difficulty can significantly impact
user performance and cognitive load during HRC [6]–[8], such
that they should be considered when designing adaptive shared
control systems.

One important consideration when designing adaptive
shared control is in assessing performance relative to task
difficulty. Existing evaluations often employ tasks which are
loosely defined and lack formal quantification of their diffi-
culty, which hampers the replicability and generalizability of
their research findings [9]. To the best of our knowledge, there
is currently no common benchmark for evaluating the efficacy
and efficiency of robot assistance in teleoperation, making it
challenging to assess the true effectiveness of shared control
systems in real-world HRC scenarios.

Fitts’ Law [10] has been widely used in Human-Computer
Interaction (HCI) to model the relationship between difficulty
of reaching motions and human performance, typically mea-
sured through movement time, which is the time it takes to
complete the reaching motion. This model has served as a
foundational framework in HCI enabling the generalization of
research findings and the optimization of user interfaces. Its
widespread adoption as a benchmarking tool has significantly
contributed to the understanding and design of effective user
interfaces [11]–[13].

Applying a similar benchmarking framework to HRC
presents unique challenges. Specifically, the assumptions un-
derlying Fitts’ Law regarding human behavior may not hold
when robot assistance is introduced, as the dynamics of shared
control alter the interaction landscape. It is thus essential
to investigate the influence of robot assistance on the re-
lationship between task difficulty and human performance.
To employ Fitts’ Law as an effective benchmarking tool
in HRC, we must first understand how various levels of
robot assistance affect the difficulty-performance relationship
it predicts. Gaining such insights would not only validate the
applicability of Fitts’ Law in HRC contexts but could also
inform the development of adaptive control strategies. For
instance, understanding these dynamics could enable the real-
time adjustment of robot assistance levels based on predicted
human performance, thereby enhancing the effectiveness and
safety of shared control systems.

Motivated by this, the overarching research question we aim
to address is: How does task difficulty and robot assistance
affect the user’s performance and cognitive load? To better un-
derstand this relationship, we conducted a teleoperation study
using a target reaching task with a definition of difficulty based



on Fitts’ Law (See Section III-B), and a shared-control scheme
which allowed continuous variation of the robot assistance
level*. Target reaching was chosen to also reflect real-world
manipulation tasks which are often composed of such atomic
motions. Through both objective and subjective measures of
task performance and cognitive workload, and the use of Fitts’
Law as a more formal and generalizable evaluation of the
effects of robot assistance on our measures under systematic
variation of task difficulty, we aimed to uncover the impact of
task difficulty and level of robot assistance on these variables.

To summarize, the paper contributes the following:
1) It provides empirical evidence of the effects of task

difficulty and assistance on performance and cognitive
load in shared control.

2) It introduces an adapted Fitts’ Law as a benchmarking
method for evaluating shared control systems for reach-
ing tasks. This captures the interaction between task
difficulty and robot assistance on user performance.

II. RELATED WORKS

A. Effects of Shared Control on Performance and Perception

By using human intelligence to drive robots via a human-
machine interfaces [14], teleoperation has become a robust
method for robots to assist humans to perform real-world
tasks in uncertain and unsafe environments [15]. To enable
the combining of the respective strengths of the robot and the
human for successful complex task completion, teleoperation
often uses shared-control [16], where command inputs from
the human and an autonomous controller are arbitrated to
determine the robot’s resulting actions. A variety of formula-
tions exist for implementing shared control, including game-
theoretical formulations of the human-robot system [17] and
control-blending mechanisms [18]. Existing shared-controllers
have been designed to optimize for task performance, such as
by minimizing collisions with obstacles while navigating [19]
or by maximizing success rate in object grasping [20]. Recent
works have also shown that the human operator’s internal state
including both cognitive load and their trust perception of the
robot can impact performance and interaction quality [21]–
[23], thus highlighting them as importance factors to consider
when designing shared control.

However, to design an effective shared-controller which
adapts to the user’s internal state, it is crucial to have reliable
real-time measures such as for cognitive load. Cognitive load
is an indicator of task complexity based on the number of
conceptual elements that need to be held in the user’s mind,
at any one time, to solve a specific task [24]. Subjective
assessment schemes such as the widely-employed Task Load
Index (NASA-TLX) [25] have been shown to reliably capture
cognitive load perception [26] but do not allow for real-
time measurements that could be used in adaptive shared-
control. Other methods such as the dual-task paradigm of
performing a secondary task (e.g., reproducing melodies [27]

*The code and data, along with a demo experiment video, are available
on the project website: https://sites.google.com/view/autonomyfitts/home.

or performing simple math [28]) concurrently with a primary
task, and physiological measures (e.g., pupil dilation [29] or
brain activity [30]) allow objectively measuring the cognitive
load level at higher frequencies [26] but suffer from the
impact of confounding factors such as learning effects [31]
and expertise in multitasking [32]. Therefore, while it may be
beneficial to employ multiple measures of cognitive load at
once, identifying a reliable real-time method to capture and
quantify cognitive load remains a challenging open problem.

Similarly, adapting robot behavior based on the user’s trust
is challenging due to the lack of an efficient and reliable
real-time trust measure. Human trust in an agent has been
defined as a multidimensional latent variable that mediates the
relationship between events in the past and the human’s choice
of relying on the agent in an uncertain environment [23].
Trust is an internal measure experienced by humans, making
it difficult to capture objectively [33]. Existing measurement
methods include physiological information [34] and brain
imaging [35] which can be influenced by confounding factors.
As a result, subjective questionnaires such as the Multi-
Dimensional Measure of Trust (MDMT) [36] which captures
trust across 2 categories - {Capacity Trust, Moral Trust} are
most widely employed in HRC [37], [38].

B. Quantifying Difficulty and Performance using Fitts’ Law

Fitts’ Law [10] is a widely used human performance model
that has been applied to evaluate interface design in HCI [11]–
[13]. The original formulation predicts the movement time
(MT) to reach a target using an index of difficulty (ID), where

MT = a+ b · ID, ID = log2

(
A

W
+ 1

)
. (1)

Here, the model parameterizes reaching motions using the
straight-line distance from the starting point to the target
(amplitude) A and the target error margin (width) W (See Fig.
1). Using these two variables, the ID (measured in bits) can be
related to the MT through (1), where a and b are the calculated
intercept and slope of this linear relation. Other works have
also extended the original formulation to higher-dimensions
[39], [40] and trajectory tracking [41].

Fitts’ Law is chosen as a building block for HRC bench-
marking it enables a systematic definition of task difficulty
which can be varied continuously, thereby enhancing result
generalizability. Furthermore, it establishes a method to eval-
uate movement performance in reaching motions through the
empirically-validated linear relationship between movement
time and index of difficulty, and therefore allows us to directly
examine the impact of robot autonomy.

Here, we formulate the two main hypotheses of this study:

• H1 - Task performance will decrease with greater task
difficulty and increase with more robot autonomy.

• H2 - Cognitive load will increase with greater task
difficulty and decrease with more robot autonomy.

https://sites.google.com/view/autonomyfitts/home
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Fig. 1: An illustration of Fitts’ Law. Amplitude (A) and Width (W) determine
the index of difficulty of the reaching motion.
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Fig. 2: Experimental setup (a) and the task visualization (b).

III. METHOD

We evaluated the performance, cognitive load and trust
of participants during their teleoperation of a Franka Emika
Research 3 robotic arm (Fig. 2a). This employed a target-
reaching task as in other Fitts’ Law studies [42], [43].

A. User Interface

The user interface was inspired by a typical teleoperation
scenario, where the participant teleoperated the real robot via
a Novint Falcon haptic interface, and perceived the physical
robot through an RViz [44] virtual rendering (Fig. 2b), which
also displayed a ring of targets. The Falcon was connected
to the robot via Ethernet to minimize communication delay.
The ring of targets was designed to lie in a vertical plane
with a constant depth, where the Falcon’s depth was fixed via
a high-gain PID controller with a zero depth reference. No
haptic feedback was provided to participants. Under this setup,
participants were able to freely move the Falcon within the
vertical plane without any disturbances in the depth direction.
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(a) The ring radius (R), movement
amplitude (A), target width (W), and
angle between consecutive targets
around the ring (θ).
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(b) The reaching movement order
for each ring of targets.

Fig. 3: Visualization of the ring geometry (a) and reaching sequence (b).

Ring No. R (m) A (m) W (m) ID RT (s)
1 0.06 0.118 0.02 2.788 0.6
2 0.06 0.118 0.01 3.680 0.6
3 0.12 0.236 0.02 3.680 1.2
4 0.12 0.236 0.01 4.623 1.2

TABLE I: Ring geometry and the associated index of difficulty (ID) for
individual reaching motions. R, A and W represent the real-world ring
radius, movement amplitude between consecutive targets, and the target width,
respectively. RT is the set time for an autonomous robot reaching motion.

B. Task

The task entailed reaching for a ring of 9 virtual targets with
the robot’s end-effector in a pre-defined sequence (Fig. 3b).
The choice of this reaching task was motivated by several
reasons. First, it has previously been used to benchmark robot
abilities in real-world robot tasks [45], [46] and has also been
used to evaluate human movement and interface design in HCI
[42], [43], [47]. This resonance with HCI user interface design
may enable the transfer of existing HCI findings to better
inform the design of intuitive and efficient user interfaces for
robot teleoperation. Moreover, reaching motions are a critical
component common to most complex real-world tasks such as
in surgical and industrial settings. Finally, the task enabled a
clear definition of an index of difficulty (ID) based on Fitts’
Law, and allowed systematic variation of robot autonomy
through a blending control scheme (see Section III-C).

The reaching sequence was fixed across all trials (Fig. 3b).
Participants were asked to complete the task “as quickly as
possible”. The ring of circular targets was parameterized by
two variables - the ring radius R and the target diameter
d. Successfully reaching a target requires the position of
the robot’s end-effector to be inside the circular target. The
Fitts’ parameters of each individual reaching motion between
consecutive targets in the sequence was computed as

A = 2R sin
θ

2
, W = d. (2)

Here, θ = 160◦ was the angle between each pair of con-
secutive targets in the ring sequence. Using θ and R, the
chord length between consecutive targets was calculated as
the movement amplitude A, while the movement width W
was set to the target’s diameter (see Fig. 3a). The Fitts’ ID
for each reaching motion was then computed using (1). We
generated a set of four target rings with Fitts’ ID summarized
in Table I. Note, the center of the ring is positioned at a
constant offset from the robot’s base, which corresponded to
the mapped position of the handle of the Falcon interface in
its origin position.

C. Shared Control

The robot controller was designed to accurately follow
an interpolated straight-line trajectory between consecutive
targets with a constant velocity. The controller’s reference
completion time for each trajectory (see Table I) was set to
be faster than the minimum recorded completion time of the
same motion by a human expert. This ensured that for an
average user, the robot provided reaching assistance rather than



hindrance. Each reach started with the robot’s end-effector at
the center of the first target (Target 1 in Fig. 3b). Participants
were instructed to start each reaching motion as soon as the
target activates, and the robot was programmed to do the same.

The robot was commanded through a blending control
between the human and its own autonomous controller [18],
[48], where the input position was computed as

u = γur + (1− γ)uh, γ ∈ [0, 1] ⊂ R. (3)

Here ur ∈ R3 denotes the reference end-effector position input
generated by its autonomous controller, and uh ∈ R3 denotes
the reference end-effector position from the human’s input
which was read at 500 Hz. The human input uh was set to be a
3 times scaling of the Falcon handle position, where this factor
was determined using the ratio between the maximum ring
diameter and the size of the Falcon’s effective workspace. The
scalar γ represents the level of robot autonomy, where γ = 1
corresponds to complete robot control (full autonomy) and
γ = 0 corresponds to complete human control (no autonomy).
By altering γ the relative autonomy between the human and
robot was varied. This variable also determined the proportion
of each reach that the robot will complete before stopping,
under no user input. The resulting input u ∈ R3 was passed
in ROS to the Kinematics and Dynamics Library (Orocos)
inverse-kinematics solver to compute joint positions, which
were tracked by the robot joint controllers running at 500 Hz.

D. Measures

We used both objective and subjective measures to inves-
tigate the relationship between task difficulty and the robot’s
autonomy level in the target reaching task and the participants’
task performance, cognitive load and trust.

1) Demographics Information: We collected participant
demographic information via an initial questionnaire. For their
potential relevance in teleoperation, we included the following
three items which participants rated on a 7-point Likert scale
from 1 (strongly disagree) to 7 (strongly agree): i) “I trust new
technology in general”; ii) “I play computer games regularly”;
and iii) “I am proficient in a musical instrument”.

2) Performance Measure: In each trial, we recorded the
autonomous controller inputs, user inputs, and the resulting
end-effector movements from the combined inputs at 40Hz.
The task performance was then evaluated for each reach
by computing the movement time (MT) — the time interval
between successive target reaches using the end-effector. Sep-
arately recording the autonomous controller and user inputs
was aimed to enable a more thorough understanding of the
movement and interaction.

3) Pupil Diameter: Larger pupil dilation has been as-
sociated with more intense cognitive processing [29], [49].
Therefore, we recorded pupil diameter data during each trial
at 60 Hz using the Tobii Pro Spark screen-based eye-tracker.

4) Self-Reported Measures: After each ring, participants
reported on the following measures via questionnaires:

Perceived Autonomy - The “perceived autonomy ques-
tionnaire” [50] has been employed in HRI research [51],

[52] to capture user perception of autonomy. Adapting the
questionnaire, we included the 10-point discrete scale item:
“How autonomous did you feel the robot was?”.

Cognitive Load - We administered the NASA-TLX ques-
tionnaire [25] with all six original sub-scales in a randomized
order as an assessment of cognitive workload.

Trust - The MDMT questionnaire [53] is composed of 8
sub-scales in both Capacity and Moral Trust. Since our study
focused on the human’s trust of the robot’s target reaching
behavior, we chose to only include the 8 Capacity Trust items.

IV. STUDY DESIGN

A. Conditions

To test our hypotheses, we used a counterbalanced, within-
subject design to examine the effects of task difficulty and
robot autonomy while controlling for order. The within-
subject conditions were the ring number ∈ {1, 2, 3, 4}
which manipulated the Fitts’ ID as presented in Table I,
and the autonomy level which was set to no (γ = 0),
medium (γ = 0.4) or high (γ = 0.8) autonomy. This gave
4 (ring number)×3 (autonomy) = 12 conditions, which were
counterbalanced using a Latin square design. With these con-
ditions, we performed an a priori power analysis to determine
our sample size using G*Power [54]. For a repeated-measure
ANOVA with 0.8 power, α = 0.05 and a medium effect size of
f = 0.25, the calculation resulted in a sample size of N = 24.

B. Participants

Ethical approval for the study was granted by The University
of Melbourne’s Human Ethics Committee under project ID
27750. The 24 participants were aged from 18 to 30 y.o.
(M = 23.0, SD = 2.7), 15 identified as female and 9 as
male. All participants performed the target reaching task using
their preferred dominant hand (23 right-handed). Participants
received a $20 gift voucher as compensation at the end of the
approximately 50 minute experiment.

Questionnaires
• NASA-TLX
• MDMT
• Trust
• Autonomy

Initial Learning
Target Reaching

3 Trials
Main Phase

• Movement Time
• Pupil diameter

Training Phase
Target Reaching

12 Trials

Target Reaching

12 Trials

Fig. 4: Experimental procedure including the training phase and main phase.
Each trial is administered with a given ring of targets and autonomy level γ.

C. Experimental Procedure

Each participant took part in an experiment comprising
of a training and a main phase (Fig. 4). In each phase,
participants completed all 12 conditions — each of which was
a single trial with a specific combination of ring number and
robot autonomy level (see IV-A). In both phases, participants
were informed that the robot’s autonomy level might change
between trials, but were not told the autonomy level itself nor
any information on its ability to perform the task.



1) Training Phase: Participants were initially shown the
setup and visualization (Fig. 2a), followed by three practice
trials under the no (γ = 0), medium (γ = 0.4) and high (γ =
0.8) autonomy levels, respectively, for them to familiarize
themselves with the Falcon system, the setup and the reaching
task. In these trials, participants were explicitly informed about
the autonomy level, which they could use as a reference for
perceiving the autonomy levels in the main phase. They then
completed 12 task trials matching the 12 respective conditions
without knowledge of the robot autonomy levels. No data was
recorded during training as it was designed for the participants
to practice the target reaching task with all combinations of
target rings and robot autonomy levels, thereby minimizing
the impact of learning effects on the main phase.

2) Main Phase: In each main phase trial, there was an
initial 5 s preparation window shown as a countdown on
the screen (Fig. 2b), during which the target ring for that
trial was also displayed. In addition, the robot’s end-effector
position was shown as a red dot located between its parallel
grippers. After the 5 s, the countdown text changed to the word
“Go!”, indicating that the trial has started. The active target
was always colored red, with all other targets green. Upon
a successful reach of the active target, it changed color to
green, followed by the next target becoming red. Participants
were instructed to “as quickly as possible” complete the task,
after which the on-screen text changed to “Stop!”, indicating
that the trial had finished. Each session took approximately
50 minutes, including the 10-minute introduction block and
a 20-minute block for each of the training and main phases.
During each trial, 8 movement times were recorded from the
8 intervals across the 9 targets and participants self-reported
on the questionnaire after each trial.

V. RESULTS

After all measures were verified to be normally distributed
using the Shapiro-Wilk test, we performed two-way repeated-
measures ANOVA with autonomy and ring number as within-
subject variables. Here, using the ring number as a single
variable (instead of each ring’s amplitude and width sepa-
rately) enabled us to perform analysis in a style consistent
with Fitts’ Law and allowed us to validate whether rings 2
and 3 - which have the same Fitts’ ID - would yield the same
results as predicted by Fitts’ Law. Results were considered
significant at the threshold α < .05. For measures which
yielded significant results, post-hoc pairwise comparisons with
the Holm-Bonferroni correction were performed to further
examine the effects of the within-subject variables on the
measures. The ANOVA results are summarized in Table II.

While the demographics were included as potential co-
variates, preliminary analysis showed no clear effect on any
dependent variable. Therefore, they were not included in the
main analysis. The time of the first movement of each trial
was also excluded to eliminate any adaptation effects. While
we recorded pupil diameter using an eye-tracker, the data was
unreliable due to device mis-calibration, and was therefore
discarded from the results and analysis.

A. Perceived Autonomy

We evaluated if the participants’ perceived autonomy was
consistent with the true autonomy levels, and if this was af-
fected by the ring number. ANOVA indicated a clear autonomy
effect (F (2, 46) = 61.731, p < .001, η2 = .472) and a small
ring number effect (F (3, 69) = 3.530, p = .019, η2 = .021),
without any interaction. Post-hoc analysis showed that the
perceived autonomy changed between all pairs of autonomy
levels across all ring numbers (p < .005), while differences
were only observed for {1, 4} (p < .001) and {2, 4}
(p = .001) ring number pairs under the high autonomy level.
This manipulation check suggests that participants correctly
perceived changes in autonomy levels. It also suggests a trend
under high autonomy where participants’ autonomy perception
decreased for target rings with higher Fitts’ ID.

B. Movement Time

ANOVA showed an effect of both ring number
(F (3, 69) = 225.503, p < .001, η2 = .665) and autonomy
(F (1.58, 36.42) = 222.807, p < .001, η2 = .549) on MT, and
an interaction effect (F (6, 138) = 8.157, p < .001, η2 = .061,
Figure 5a). Post-hoc analysis indicated differences in MT
for all pairs of autonomy levels across all ring numbers
(p < .001). Clear differences were also found for all pairs of
ring numbers across all autonomy levels (p < .001), except
for the {2, 3} pair of ring numbers under no autonomy.
This suggests that Fitts’ Law holds under the no autonomy
condition as the MT increases across rings with increasing
Fitts’ ID (where rings {2, 3} have the same Fitts’ ID).
However, the interaction effect shows that this increase in
MT is reduced for higher levels of autonomy.

To gain further insight into autonomy’s effect on the re-
sulting movement, we first analyzed the recorded velocities of
the user movements under different autonomy levels. ANOVA
showed an effect of autonomy on the users’ average velocity
(F (2, 46) = 65.252, p < .001, η2 = .183), indicating that
users moved at higher velocities on average with increasing
levels of autonomy. We also analyzed the average distance by
which the robot was leading the human within each reaching
trajectory, and observed an effect of autonomy on the measure
(F (2, 46) = 65.252, p < .001, η2 = .183), which is consistent
with the previous result of users moving faster with more robot
autonomy.

C. Cognitive Load

We observed effects of both ring number (F (3, 69) =
6.859, p < .001, η2 = .040) and autonomy (F (1.24, 28.62) =
15.271, p < .001, η2 = .082) on the raw NASA-TLX score,
where the 6 subscales showed internal consistency (Cronbach’s
α = .818). An interaction on the NASA-TLX score was also
observed (F (6, 138) = 3.823, p = .001, η2 = .021, Figure
5b). Post-hoc analysis showed differences for all pairs of
autonomy levels across all ring numbers (p < .05), but no
differences were observed with the {no, medium} autonomy
level pair for ring 1 and the {medium, high} autonomy level
pairs across rings 2, 3 and 4.



Ring number Autonomy Interaction
Measure DF F p η2 DF F p η2 DF F p η2

Perceived Autonomy (3, 69) 3.530 0.019 0.021 (2, 46) 61.731 <0.001 .472 (6, 138) 1.428 0.208 0.013
Movement Time (3, 69) 225.503 <0.001 0.665 (1.58, 36.42) 222.807 <0.001 0.549 (6, 138) 8.157 <0.001 0.061

NASA-TLX (3, 69) 6.859 <0.001 0.040 (1.24, 28.62) 15.271 <0.001 0.082 (6, 138) 3.823 0.001 0.021
MDMT (3, 69) 8.069 <0.001 0.025 (1.26, 28.9) 9.667 0.002 0.138 (6, 138) 1.893 0.086 0.012

TABLE II: ANOVA results for all measures against ring number, autonomy, and their interaction. DF = (DFn, DFd) are the degrees of freedom in the
numerator and denominator respectively, p specifies the p-value, η2 is the generalized effect size.

(a) Movement Time (b) Averaged NASA-TLX (c) Averaged MDMT

Fig. 5: Boxplots showing the distributions of each measure against ring number, grouped by autonomy. Differences observed from post-hoc pairwise comparisons
with Holm-Bonferroni correction are also labelled with their significance levels.

These results suggest that the perceived cognitive load was
lower with increased autonomy, though this was saturated
between the no and medium autonomy levels for the ring
with the lowest Fitts’ ID, and between the medium and high
autonomy levels for the rings with higher Fitts’ ID. Further
post-hoc analysis between all pairs of ring numbers for each
autonomy level showed some differences (Figure 5b). Here, it
is worth highlighting that under medium autonomy participants
perceived the same cognitive load across all target rings.

D. Trust

The MDMT averaged across the Reliable and Capable sub-
categories (Cronbach’s α = .95) indicated both a ring number
effect (F (3, 69) = 8.069, p < .001, η2 = .025) and an
autonomy effect (F (1.26, 28.9) = 9.667, p = .002, η2 =
.138), while no interaction effect was observed (Figure 5c).
Post-hoc analysis found differences for all pairs of autonomy
levels (p < .05) across all ring numbers, suggesting that
participants’ trust in the robot was in general greater under
higher autonomy. Further post-hoc analysis showed differences
under high autonomy level across all ring number pairs except
the {2, 3} pair, but no differences in general between all pairs
of ring numbers for low and medium autonomy levels. This
indicates that while the variation in Fitts’ ID did not have a
clear impact on the users’ trust towards the robot in general,
there was a trend of users having less trust towards the high
autonomy robot for target rings with higher Fitts’ ID.

VI. DISCUSSION

A. Difficulty and Autonomy Affect Task Performance

The results indicate that participants’ movement time in-
creased with greater difficulty and decreased under higher
robot autonomy. Here, the results only partially support H1,
as although the observed main effect of ring number on move-
ment time confirms that Fitts’ Law holds under no autonomy,
the interaction effect with autonomy level (see Section V-B)
altered this relationship such that a similar Fitts’ Law trend
was not observed under the influence of robot autonomy.

The observed impact of robot autonomy on the Fitts’
relationship may have been due to several factors: i) the
autonomous robot controller’s target reaching motions did not
satisfy Fitts’ Law; and ii) the existence of robot autonomy
affected the human behavior. Here, our results indicated that
users moved at higher velocities on average with increasing
levels of autonomy. This suggests that under higher levels of
robot autonomy users’ movement was more in-sync with the
robot’s higher (constant) velocity movements, which is also
consistent with the observed trend of the average distance by
which the robot was leading the human within each reaching
trajectory decreasing across increasing autonomy levels. This
may imply that upon perceiving the effect of robot autonomy
through visual feedback at the start of each trial, the user
adapted their movement behavior throughout the remaining
reaching motions of the trial. Overall, these factors may have
led to the deviation of the relationship between movement time
and difficulty from the original Fitts’ Law prediction under the
influence of robot autonomy.



B. Benchmarking Shared Control Using Adapted Fitts’ Law

The effect of robot autonomy on the Fitts’ relationship
suggests that a more comprehensive performance model is
needed to account for the impact of both Fitts’ ID and robot
autonomy on movement time, and to capture their interaction.
While further investigation is needed to develop and refine
such a model, based on our results we propose a Linear
Mixed Model with both ID and robot autonomy (γ) and their
interaction, forming an adapted Fitts’ equation:

MT = a+ b1ID + b2γ + b3(γ · ID), (4)

where for our experiment, this model would have coefficients

[a, b1, b2, b3] = [−0.28, 0.54,−0.08,−0.18] (5)

with (R2 = 0.735).
The linear model coefficients may be interpreted in a similar

manner as the original Fitts’ Law. Here, b1 indicates the quality
of the control interface, where a smaller value indicates less
increase in movement time across increasing Fitts’ ID and
hence a more efficient interface. b2 indicates the quality of the
autonomous robot algorithm, quantifying the change in task
performance as more control authority is given to the algo-
rithm. Finally, b3 indicates the interaction between the control
interface and the robot algorithm, where a smaller magnitude
suggests a better fit and less interference between the two
on task performance. In particular, a negative b3 implies that
higher autonomy effectively enhances the interface quality and
hence the overall shared control system’s efficiency, and that
the performance of the robot algorithm relative to a human is
better for higher difficulty levels.

Our results clearly highlight the level of autonomy as a fac-
tor of variation in movement time. Furthermore, the equation
implies that the task’s effective ID may deviate from its true
Fitts’ ID due to varying robot autonomy. While movement
time may be directly used to quantify effective ID in the
human-only case with no robot autonomy given its direct
linear link to the true Fitts’ ID, it is worth investigating if
movement time can also be directly applied to shared control
settings with varying robot autonomy, or if more complex
measures accounting for autonomy are required. Moreover,
the effective ID may also be linked to the user’s perceived
cognitive load level, which presents an opportunity for future
works to determine the exact relationship between them and
investigate the possibility of using effective ID as a real-time
estimator of perceived cognitive load. Ultimately, we aim for
the adapted Fitts’ Law to serve as a foundation for future
works where further investigation and development is needed
to bring it closer to challenging real-world teleoperation tasks.

C. Effects of Difficulty and Autonomy on User Perception

Our results show that in general the subjective cognitive
load was lower under higher robot autonomy, and the users’
perceived cognitive load was higher for greater Fitts’ ID,
thereby partially supporting H2. Here, it is worth highlighting
that while some differences in perceived cognitive load were

observed between target rings with different Fitts’ ID under
both no and high autonomy levels, under medium autonomy
participants perceived the same level of cognitive load across
all target rings (see Section V-C). This is an interesting
finding as it may suggest that when there is a change in task
difficulty during human-robot shared control, a medium level
of robot autonomy may be employed to minimize its impact
on the user’s perceived cognitive load. We note that this is
a preliminary result and requires further investigation with
different tasks and experimental scenarios to better understand
this relationship.

The MDMT results indicate that trust in the robot increased
with higher autonomy and had a trend of reducing with diffi-
culty in the high autonomy condition. This suggests that while
participants understood the robot’s behavior and identified its
superior performance, they may be less comfortable with it
having more control authority for complex actions.

Overall, we highlight the importance of investigating the
impact of different types of feedback during teleoperation on
the user’s ability to understand the robot’s movement during
task completion which may also impact their perception of
the robot. Moreover, while we have considered participant
expertise through the demographics items and controlled for
potential learning effects through practice trials, we believe
that increasing familiarity with robot operation and task com-
pletion may still affect the user’s perception of the autonomous
system and task difficulty, and therefore merit consideration
when designing effective shared control systems.

D. Generalization to Other Factors

In this study, the robot’s accuracy and efficiency in task
completion may have caused participants to perceive it as
more trustworthy as they are more comfortable with better
task performance. This could have also led to lower levels
of perceived cognitive load since the user focuses less on
improving accuracy, which is consistent with previous findings
in [55] that more automated systems could lead to less effort
exerted by the operator. Previous works have however shown
that robot error [56], [57] can indeed impact user perception
and performance during the interaction. Therefore, while the
movements of the user and robot were more in-sync under
higher autonomy levels in this study, it is worth investigating
if this trend arose from participants’ trust towards accurate
robot performance, and whether alternative behaviors emerge
as a result of the impacted user perception due to imperfect
robot behavior.

Furthermore, it is worth noting that our observed results
are likely to be feedback-reliant. Here, previous works have
demonstrated that providing haptic feedback to the user during
shared control can enhance task performance [58], [59] and
decrease cognitive workload [59]. [60] also showed through a
similar Fitts’ reaching task that performance can be impacted
by the size and placement of the task’s visual display. More-
over, while our setup involving high-frequency communication
and tuned PID joint controllers minimized the delay between
user input and the resulting robot motion, teleoperation setups



with more realistic delay may also impact the task performance
and user perception [61], especially in tasks such as repeated
target reaching which require high precision under time con-
straints. Therefore, future works should investigate how the
type and quality of feedback affect task performance and user
perception of the robot in shared control settings.

Finally, while the chosen target reaching task in this study
enabled adjustable levels of difficulty based on Fitts’ Law
and allowed us to systematically evaluate the effects of robot
autonomy on user performance, it is possible that our results
may be task-specific, and different findings may be observed
from alternative tasks and setups. Therefore, we emphasize
the need for further investigation with more complex, re-
alistic teleoperation tasks to achieve a more robust human-
robot performance model. Similarly, we note that differing
results may arise from other methods of sharing control than
our implementation of the blending formulation, such as by
inferring human intent [62] or controlling the robot through
optimization techniques [63]. Therefore, it is important for
future works to validate our proposed benchmarking method in
other task scenarios and control-sharing mechanisms in order
to better generalize our findings.

VII. CONCLUSION

This paper explored the relationship between task difficulty,
robot autonomy, human cognitive load and trust and the
overall task performance during a HRC task. Our hypothesis of
observing higher movement times and cognitive load levels in
more difficult tasks was confirmed. Additionally, our analysis
revealed that robot assistance improved task performance
and decreased users’ perceived cognitive workload, with an
interaction between task difficulty and robot autonomy on
performance also observed. Through proposing an adapted
Fitts’ Law as a benchmarking method to formally evaluate
the quality of shared control systems and their impact on the
user in collaborative tasks, we aim for future works to further
investigate and validate this relationship in different scenarios,
thereby leading to better generalization of our findings and the
development of more intelligent and adaptive robots for HRC.
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