
Variable Grasp Pose and Commitment for
Trajectory Optimization

Jiahe Pan
University of Melbourne

Melbourne, Australia
jmpan@student.unimelb.edu.au

Kerry He
Monash University

Melbourne, Australia
kerry.he@monash.edu

Jia Ming Ong
Monash University

Melbourne, Australia
jong0052@student.monash.edu

Akansel Cosgun
Deakin University

Melbourne, Australia
akansel.cosgun@monash.edu

Abstract—We propose enhancing trajectory optimization
methods through the incorporation of two key ideas: variable-
grasp pose sampling and trajectory commitment. Our iterative
approach samples multiple grasp poses, increasing the likelihood
of finding a solution while gradually narrowing the optimization
horizon towards the goal region for improved computational
efficiency. We conduct experiments comparing our approach
with sampling-based planning and fixed-goal optimization. In
simulated experiments featuring 4 different task scenes, our
approach consistently outperforms baselines by generating lower-
cost trajectories and achieving higher success rates in challenging
constrained and cluttered environments, at the trade-off of longer
computation times. Real-world experiments further validate the
superiority of our approach in generating lower-cost trajectories
and exhibiting enhanced robustness. While we acknowledge the
limitations of our experimental design, our proposed approach
holds significant potential for enhancing trajectory optimization
methods and offers a promising solution for achieving consistent
and reliable robotic manipulation.

Index Terms—Robots, Grasping, Planning, Trajectory

I. INTRODUCTION

Robotic manipulation techniques have traditionally followed
a two-step process [1]. Firstly, a grasp pose is determined
based on the likelihood of grasp success using either model-
based or deep learning-based approaches. Subsequently, the
arm trajectory is computed by employing sampling-based
planning methods such as Rapidly-exploring Random Trees
(RRT) [2] or Probabilistic Roadmaps (PRM) [3], or through
trajectory optimization algorithms such as Covariant Hamilto-
nian Optimization for Motion Planning (CHOMP) [4] or Se-
quential Convex Optimization (TrajOpt) [5]. However, solely
selecting the end-effector goal pose based on predicted grasp
success without considering the arm motion can lead to subop-
timal arm trajectories in terms of factors like completion time
or energy efficiency. This limitation presents an opportunity
for improvement, particularly when grasp poses have similar
probabilities of success or when the robot operates in cluttered
environments where different grasp poses may yield vastly
different trajectories.

Previous works have explored various approaches for tra-
jectory planning with variable grasp poses. Dragan et al.
[6] extended CHOMP [4] to include goal sets as end-point

Fig. 1: Trajectory planning for various grasp poses for an occluded
cuboid target (top). The robot arm starts in a highly constrained posi-
tion (arm-tuck), and plans a trajectory towards grasping a cylindrical
target (bottom).

constraints. Murooka et al. [7] combined sampling-based
planning and gradient-based optimization to solve for optimal
trajectories that reach towards sampled grasp poses. Horowitz
et al. [8] explored grasp and manipulation planning as a single
optimal control problem. Ichnowski et al. [9] used Dex-Net 4.0
[10] and an SQP-based algorithm for optimizing minimum-
time trajectories in warehouse picking tasks.

Vahrenkamp et al. [11] evaluated trajectories towards differ-
ent grasp poses using an online quality measurement module.
Jetchev et al. [12] used 3D laser point cloud information to
construct an occupancy probability map for trajectory gener-
ation in cluttered environments. Dogar et al. [13] analyzed
physical contacts with cluttered scenes to improve planner
efficiency and success rates. Berenson et al. [14] used goal
regions in the manipulator’s workspace for grasp and trajectory
planning. Bergman et al. [15] proposed Receding Horizon
Planning (RHP), and Mandalika et al. [16] introduced Lazy
Receding Horizon A* for path planning in cluttered scenes.

In this paper, we propose an approach that incorporates
the selection of grasp poses into trajectory optimization. The
ability to vary the grasp pose relative to the target object
becomes particularly advantageous in cluttered environments,
as the chosen grasp pose directly affects the quality and
feasibility of the robot arm’s trajectory during the reach and
grasp actions. Therefore, our approach aims to explore the
space of all possible grasp poses for a given target object and
select one that leads to a more efficient trajectory for perform-
ing the grasping action. Additionally, we explore trajectory979-8-3503-3752-5/23/$31.00 ©2023 IEEE

commitment in this paper in which we gradually shrink the
optimization horizon towards the goal region to increase the
efficiency of trajectory optimization. To validate our approach,
we implement several baseline methods based on TrajOpt
and RRT-Connect. We compare these baselines against our
approach in four distinct task environments featuring primitive
targets and obstacles arranged in different configurations, with
varying initial arm poses. Finally, we evaluate our method by
analyzing planning time, trajectory cost, and success rates of
the different approaches in simulated and real-world experi-
ments on a 7-DoF serial manipulator.

Our approach differs from existing methods by directly
sampling grasp poses during planning, without pre-computing
or ruling out infeasible grasps. We treat TrajOpt as a black-
box optimizer, refining segments of the trajectory near the
target object. Our refinement step ensures optimality of the
entire trajectory. Notably, our method is accessible to re-
searchers without extensive knowledge of grasp-pose synthesis
or trajectory planning with high-DOF robotic manipulators,
and despite treating TrajOpt as a black-box optimizer, users
can still control its high-level input parameters which directly
relate to the trajectories generated.

II. PROPOSED APPROACH

We build upon the original TrajOpt algorithm [5], treating
it as a black-box optimizer. Given information about the task
environment, an initial robot arm pose, and a goal pose, Tra-
jOpt outputs the optimal trajectory from the initial to the final
goal pose. We augment TrajOpt with an outer optimization
loop that randomly samples different grasp poses relative to
the target object. For each sampled pose, we use TrajOpt to
solve for an optimal trajectory.

A key hypothesis behind our commitment idea is that since
only the grasp pose varies between iterations, the waypoints
near the target object are more affected than those near the
starting pose. Therefore, it is unnecessary to recompute the
entire trajectory in each iteration. Instead, we gradually shrink
the optimization horizon towards the goal region to increase
TrajOpt’s efficiency. This reduction in the optimization horizon
helps the manipulator escape from constrained configurations
and navigate clustered environments. We define the waypoints
outside TrajOpt’s optimization horizon as committed way-
points, which are stored in memory. As the outer-loop iter-
ations progress, we add new committed waypoints and further
shrink the optimization horizon towards the goal region.

Sec. II-A provides a brief overview of the TrajOpt algorithm
and illustrates how it is embedded as a black-box optimizer
in our algorithm. Sec. II-B presents how we parameterize the
variable grasp pose for a primitive object shape. In Sec II-C,
we provide a description of our algorithm and illustrate the
high-level logic using a flowchart.

A. Black-box Optimizer

Trajectory optimization for robotic manipulation is often
posed as a non-convex, constrained optimization problem. In
the TrajOpt implementation, the cost function is defined as

the squared sum of the accumulative velocity, acceleration
and jerk costs across consecutive joint-space waypoints of
the trajectory, which relates to the length of the physical
trajectory. Equality and inequality constraints arise from the
robot’s joint limits, avoiding collision objects, and reaching
the goal pose. The optimization problem is solved iteratively
through a series of convex optimization problems using SQP.
The penalty coefficients for the constraints vary according to
improvement in the cost, until it converges and a valid solution
trajectory is found, or an iteration limit has been reached.

Our algorithm interacts directly with the following 5 param-
eters of the TrajOpt algorithm:

• Start pose - The initial state of the robot.
• Goal pose - The target pose that TrajOpt will plan the

trajectory towards.
• InitTraj - The initial trajectory given to TrajOpt to

initialize the SQP algorithm.
• Tolerance - The tolerance for constraint-violation. Values

greater than this parameter leads to a trajectory being
considered invalid by TrajOpt.

• Waypoints - The number of joint-space waypoints to plan
for given some initial and final poses.

Overall, the TrajOpt algorithm is treated as a black-box
optimizer which takes inputs of planning queries and outputs
feasible solution trajectories if found.

B. Grasp Pose Parametrization

To introduce how we paramterize the set of possible ways
a robot can grasp a primitive object, let us first consider a
cuboid. When the robot faces this object directly, it has 3
feasible grasp direction - {front, left, right}, and the extra
grasp pose from the top face and all the grasp angles in
between. First analyzing a single side (see Fig. 2), we define
the parameters (θ, s), where θ governs the grasp angle from
horizontal, and s is the location of the end-effector’s centre
point along an arc which varies with θ. This parametrization
model maintains a high overlap-region between the cross-
sections of the end-effector and the object, hence ensuring
stable grasps for all feasible poses. The bounds for (θ, s) are
set relative to the object’s dimensions, allowing our model to
scale automatically to different-sized objects. Our model can
easily generalize to cylindrical and spherical objects by adding
a rotational degree of freedom in the parametrization, using the
parameter α (see Fig. 2).

Fig. 2: (Left) Side view of grasp angles of 0◦, 45◦ and 90◦ (left to
right). Red dot is the center point position of the end-effector, purple
line shows the possible positions of s, overlap regions are highlighted.
(Right) α represents the approach angle of the grasp (Top view).

Symbol Description
µmax A predefined tolerance threshold ensuring that the final solution

trajectory satisfies goal constraints and is collision-free.
µ0 The initial value of the penalty coefficient, initialized at two

orders of magnitude higher than µmax. This relaxes the problem
initially, aiding TrajOpt in generating trajectories efficiently,
especially for highly constrained environments.

MaxIters The iteration limit for the outer optimization loop, independent
of any iteration limits within the TrajOpt algorithm.

qs Initial robot configuration from the problem description
N0 A fixed parameter defining the total number of waypoints to

plan for over the entire horizon.
q0 The current starting robot configuration (Start pose)
G The randomly-sampled Cartesian grasp pose in each iteration.

(Goal pose)
x0 The linearly-interpolated trajectory between q0 and G, unless

in the refinement step, where TrajOpt is initialized with the
concatenated trajectory. (InitTraj)

µ The current constraint-tolerance (Tolerance)
N The current number of waypoints inside the optimization hori-

zon, initially set to N0. (Waypoints)
C The list of committed trajectory waypoints, updated in each

commitment step.
sthres A threshold variable that determines when commitment steps are

triggered. Initialized as 1 and incremented at each commitment
step, encouraging exploration before making further commit-
ments.

s The count of successful TrajOpt runs for the current optimization
horizon. Resets to 0 after each commitment step.

TABLE I: Summary of parameters and variables. Highlighted vari-
ables are used as inputs to the TrajOpt algorithm.

C. The Algorithm

The algorithm’s parameters and variables are shown in
Table I, and a flowchart representation is shown in Fig. 3.
A summary of key aspects of the algorithm are as follows:

1) Initialization: In the first iteration, a grasp pose, G, is
randomly sampled with respect to the target object and
converted to the corresponding pose in the robot’s task-
space frame. Then, TrajOpt is executed with the initial
parameters: q0 = qs, N = N0, and µ = µ0.

2) Commitment Step: In any outer iteration, if TrajOpt
successfully generates a solution trajectory, we store it in
a temporary list of maximum size sthres, and increment s
by 1. If s = sthres, a commitment step is triggered, where
we pick the lowest-cost trajectory from the temporary list
and add a fraction of its waypoints to the committed list,
C. Then, we decrease the penalty coefficient, µ (unless
it has reached µthres), reduce N by the number of
newly-committed waypoints, increase sthres, reset s to
0, and empty the temporary list. If TrajOpt fails to find
a solution, the algorithm proceeds to the next iteration
without updating any variables.

3) Grasp Pose Sampling: Using our parametrization model
from Sec. II-B, a grasp pose is randomly sampled in each
outer-loop iteration, and planning is performed for the
current optimization horizon. This process continues until
MaxIters is reached.

4) Upper Bound on Committed Waypoints: To prevent
an excessively long commitment list, an upper bound

Fig. 3: Flowchart representing the logic of the algorithm.

is imposed on the size of C. Once reached, no further
commitment steps take place. The fraction of waypoints
added at each commitment step affects how quickly this
bound is reached and is a hyper-parameter that requires
tuning.

5) Refinement Step: If TrajOpt successfully solves in any
outer-loop iteration and the condition µ ≤ µmax is
satisfied, a refinement step is performed. In this step, the
current solution trajectory is concatenated with the list of
committed waypoints and passed to TrajOpt for further
optimization. The resulting optimal trajectory spans the
entire horizon and is added to a list of candidate solution
trajectories.

6) Final Solution: When MaxIters is reached, the final
solution trajectory is selected from the candidate list
based on the lowest cost. If the list is empty, indicating
that no valid candidate trajectories were generated, the
algorithm returns with failure.

III. EXPERIMENTS & RESULTS

In this section, we present a comprehensive evaluation of
our proposed approach by comparing it to several baseline
methods. We conduct performance comparisons in four dis-
tinct task environments, which are pre-constructed and include
simulations as well as real-world experiments using the Fetch
robot. By systematically analyzing the results across these
environments, we aim to assess the effectiveness and efficiency
of our approach in different scenarios.

Fig. 4: Visualisation of our algorithm planning a grasp towards a
target (highlighted) in simulation, for 4 different scenes based on
a shelf or tabletop workspace, and with multiple primitive objects
in different poses. Each scene also plans from different initial arm
configurations, including the constrained arm-tuck pose.

A. Baseline Approaches

For analysis of both the variable grasp pose planning and
trajectory commitment ideas, we have designed the following
4 baseline approaches. Note that the baselines do not include
any aspect of our trajectory commitment approach.

• RRT-Connect: Randomly sample a grasp pose and run
RRT-Connect once.

• Fixed Goal: Run the TrajOpt optimizer once, for a fixed
hand-chosen grasp pose relative to the target object.

• Variable Goal, Single Iteration: Randomly sample a
grasp pose relative to target object, and run TrajOpt once.

• Variable Goal, Multi-Iteration: Run TrajOpt 5 separate
times, each with a different randomly sampled grasp pose,
then return trajectory with lowest cost.

B. Experimental Scenes

For experimentation, we have constructed 4 different task
scenes. They are mostly distinct in the initial arm configura-
tion, the objects’ shapes, dimensions and poses, and whether
the workspace is a shelf-like or table-top scenario. Figure 4
shows the following scenes, Box Shelf, Box Table, Cylinder
1 and Cylinder 2, in the order of left to right, top to bottom.
The target object in each scene is highlighted.

• Box Shelf - A shelf-like scene, with 3 large boxes (25cm
× 25cm × 8cm) arranged in a row. Initially the arm is
inside the shelf.

• Box Table - A table-top scene, with 3 medium-sized
boxes (15cm × 15cm × 6cm) arranged such that the
target is occluded by another collision object. Initially in
arm-tuck position.

• Cylinder 1 - A table-top scene, with 3 small cylinders
arranged in a row. Initially in arm-tuck position.

• Cylinder 2 - Same as the Cylinder 1 scene, apart from
the arm initially being in one of our randomly-generated

configurations, which from previous experimentation is a
very easy pose to plan from.

C. Metrics
For both the simulated and real world experiments, we base

our discussion on the following three metrics:
• Planning Time (s)
• Trajectory Cost (using the cost definition from TrajOpt)
• Success Rate (%)

D. Simulation Results
We ran 300 independent trials for each of the 5 approaches

(4 baselines + Ours), for each of the 4 different task scenes
shown in Fig 4. The results are shown in Table II.

In the simulated scenes, our approach by far had the highest
success rate in all scenarios. Our approach also consistently
generated the lowest-cost trajectories compared to the base-
lines in three out of four scenarios. For the Cylinder 2
scene, where the initial arm configuration is unconstrained, the
Variable Goal, Multi-Iteration baseline generated slightly
lower-cost trajectories on average, while matching the 100%
success rate of our approach. For the Fixed Goal baseline, we
chose to not include its success rate, as the fixed grasp poses
it plans towards are hand-picked for each scene to guarantee
feasibility. Since all 4 other approaches adopt the automated
random grasp sampling, the success rate is not a meaningful
metric for comparison here.

Regarding computing time, the RRT-Connect baseline con-
sistently exhibited the shortest computation time for generating
a trajectory. However, it’s important to note that the trajectories
generated by this baseline were significantly less efficient in
terms of cost compared to trajectory optimization methods.
It’s also worth noting that both our approach and the Variable
Goal, Multi-Iteration baseline exhibited significantly longer
planning times compared to the single-iteration trajectory
optimization baselines, as a consequence of running TrajOpt
for multiple grasp poses.

Overall, the results demonstrate that our approach outper-
forms the baselines in terms of generating lower-cost tra-
jectories and achieving higher success rates, especially for
constrained tasks involving cluttered objects and challenging
initial configurations. However, the improvements were less
significant in less-constrained task environments.

During the simulated experiments, we made an observation
that confirmed one of our previous hypotheses. As our ap-
proach committed more trajectory waypoints, resulting in a
shrinking optimization horizon, TrajOpt’s speed in generating
a solution trajectory or returning failure significantly increased.
This speed-up is attributed to the fact that the dimension of
the optimization problem is proportional to the number of
trajectory waypoints to plan for. Consequently, our approach
was able to plan for approximately double the number of outer-
loop iterations (the number of times the TrajOpt optimizer is
run) compared to the Variable Goal, Multi-Iteration base-
line, within a similar total planning time. This improvement
directly contributed to the higher success rate achieved by our
approach.

Box Shelf Box Table Cylinder 1 Cylinder 2
% − sec % − sec % − sec % − sec

Method Succ. Cost Time Succ. Cost Time Succ. Cost Time Succ. Cost Time
RRT-Connect [2] 22 0.540 4.3 28 1.99 1.3 36 1.77 1.3 37 9.76 1.3
Fixed Goal - 0.130 12.9 - 0.69 25.6 - 0.72 20.6 - 4.81 17.3
Variable Goal, Single Iteration 19 0.130 15.6 20 0.69 30.8 33 0.72 22.0 34 4.83 16.4
Variable Goal, Multi-Iteration 82 0.128 77.8 74 0.7 158.5 93 0.71 211.5 100 4.74 81.8
Variable Goal, Multi-Iteration, Commitment (Ours) 95 0.122 79.8 97 0.61 123.3 96 0.66 208.2 100 4.88 96.9

TABLE II: Simulation results from 300 trials for each scenario per method. Best results are displayed in bold.

% − sec
Method Succ. Cost Time
Variable Goal, Single Iteration 40 0.76 23.6
Variable Goal, Multi-Iteration 80 0.68 80.7
Variable Goal, Multi-Iteration, Commitment (Ours) 80 0.42 80.1

TABLE III: Real robot results from 10 trials for each method. Best
results are displayed in bold.

E. Real Robot Results

Fig. 5: Top view of our real-life experimental scene. The cylinder
(highlighted) is fixed to be the target object across all trials.

In our real-world experiments, we employed the Fetch robot
within a table-top environment featuring a fixed cylindrical
target object and several cuboids of varying dimensions and
poses (see Fig. 5). To simplify the pose determination of
all objects, including the table, we utilized Alvar markers.
We conducted 10 independent trials for each of the three
approaches, and the results are shown in Table III.

The real-world experiment results demonstrate that our ap-
proach consistently generated lower-cost trajectories compared
to the other two baselines. Moreover, both our approach
and the Variable Goal, Multi-Iteration baseline exhibited a
remarkable improvement in success rate, succeeding in 8 out
of the 10 trials. This significant enhancement in robustness
is accompanied by a trade-off of increased planning time.
However, it is important to note that the planning times for
our approach and the Variable Goal, Multi-Iteration baseline
were comparable.

For a visual comparison of the solution trajectories gener-
ated by our approach and the Variable Goal, Multi-Iteration
baseline, Figure 6 illustrates the qualitative difference between
the solutions of the two approaches, highlighting the superior
performance of our approach in terms of trajectory quality.

IV. DISCUSSION

Of the four simulation scenes we designed, our algorithm
consistently generated the lowest-cost trajectories and exhib-
ited the highest success rate in three of them. However, in
the less constrained environment of the Cylinder 2 scene,
the Variable Goal, Multi-Iteration baseline outperformed our

approach in trajectory cost while maintaining a similar level of
consistency. Consequently, we hypothesize that our approach
may not offer a significant advantage over existing motion
planners in easier task environments. However, it excels in
highly constrained tasks by efficiently selecting better grasp
poses and consistently generating corresponding lower-cost
trajectories.

Regarding our experimental design, a key limitation is the
lack of variation in the task scenes. The Box Table and
Cylinder 1 scenes feature a table-top environment with three
objects of the same type scattered on the table, while the
Box Shelf and Cylinder 2 scenes have similar arrangements.
Throughout the 300 simulation trials conducted for each scene,
all aspects of the environments remained unchanged. This
design choice enables consistent calculation of success rates
for each approach. Additionally, since most of the approaches,
including our method, incorporate random sampling, conduct-
ing repeated trials in consistent task scenes allows for more
accurate interpretation of performance metrics using mean and
standard deviation values.

However, this design also limits the ability to draw broader
conclusions about the performance of our method. To achieve
more generalizable conclusions, it may be necessary to in-
troduce higher variation in experimental scenes by incorpo-
rating different collision object arrangements across trials.
One approach is to randomly generate a large number of
distinct, highly constrained task scenes and conduct slightly
fewer repeated trials for each scene. This method provides the
distribution of outcomes for each scene while still utilizing
mean and standard deviation as valid metrics to represent the
performance of each approach. Moreover, this approach intro-
duces greater scene variation, which helps reduce systematic
bias towards scenes with specific characteristics.

Another potential improvement in scene design involves the
choice of initial arm configurations. Generating random initial
configurations that avoid immediate collisions with objects in
the highly constrained task space can be challenging. One
solution is to position the robot directly in a feasible pose
within the task environment and then randomly sample a large
number of task space goal poses for the end-effector. An
efficient trajectory planning algorithm such as RRT-Connect
can then be used to move the arm towards each task space goal
pose. Successful trajectories from this process yield valid joint-
space arm configurations that can be used as initializations.
Overall, these adjustments to our experimental design could
lead to more powerful conclusions regarding the performance

Fig. 6: Trajectories generated by the Variable Goal, Multi-Iteration baseline (top-row) and our approach (bottom-row). Our approach
produced a lower-cost trajectory.

and robustness of our method, which would generalize well
to a wider range of scenes.

V. CONCLUSIONS

In this paper, we introduced the concept of variable grasp
pose planning and trajectory commitment, and the key moti-
vations behind these ideas. Through both simulated and real
experiments, we demonstrated that our proposed algorithm ex-
hibits more consistent and robust performance across a series
of four task scenes compared to various baseline approaches
based on existing motion planning algorithms. However, we
also discussed the limitations of our experimental design,
which provides valuable insights for future improvements.

One immediate focus for future work is the design of a
method to generate randomized task scenes that incorporate
greater variation in object types, dimensions, positions, ori-
entations relative to the robot, and the initial configuration
of the robot itself. By testing the proposed method in a
broader range of settings, we can obtain more meaningful
results and evaluate its performance under diverse conditions.
Additionally, improving the computation time for the proposed
method, such as by parallelizing computing trajectories of
multiple grasp poses [7], will allow our method to be even
more competitive with existing approaches.

For robotic manipulators with a mobile base, such as the
Fetch robot, an intriguing aspect to explore is incorporating
the base pose of the robot as additional degrees of freedom in
grasp planning and trajectory optimization. Preliminary results
suggest that the base pose can directly impact the optimal
grasp pose and trajectory cost for moving the arm manipulator
toward the target object. Therefore, investigating the influence
of the base pose on the overall performance and cost of the
algorithm holds promise for further advancements.

In summary, this paper presents a novel approach for vari-
able grasp pose planning and trajectory commitment, show-
casing its superiority over baseline approaches in terms of
consistency and robustness. While acknowledging the limita-
tions of our experimental design, we propose future directions
that can build upon the concepts and methods introduced here.
These future endeavors have the potential to address current
limitations, enhance the overall performance, and increase the
robustness of the algorithm in real-world scenarios.

REFERENCES

[1] Rhys Newbury, Morris Gu, Lachlan Chumbley, Arsalan Mousavian,
Clemens Eppner, Jürgen Leitner, Jeannette Bohg, Antonio Morales,
Tamim Asfour, Danica Kragic, et al. Deep learning approaches to grasp
synthesis: A review. IEEE Transactions on Robotics, 2023.

[2] J.J. Kuffner and S.M. LaValle. Rrt-connect: An efficient approach to
single-query path planning. In ICRA, 2000.

[3] Lydia E Kavraki, Petr Svestka, J-C Latombe, and Mark H Overmars.
Probabilistic roadmaps for path planning in high-dimensional configu-
ration spaces. IEEE Transactions on Robotics and Automation, 1996.

[4] Nathan Ratliff, Matt Zucker, J. Andrew Bagnell, and Siddhartha Srini-
vasa. Chomp: Gradient optimization techniques for efficient motion
planning. In IEEE International Conference on Robotics and Automa-
tion, 2009.

[5] John Schulman, Yan Duan, Jonathan Ho, Alex Lee, Ibrahim Awwal,
Henry Bradlow, Jia Pan, Sachin Patil, Ken Goldberg, and Pieter Abbeel.
Motion planning with sequential convex optimization and convex colli-
sion checking. The International Journal of Robotics Research, 2014.

[6] Anca D. Dragan, Nathan D. Ratliff, and Siddhartha S. Srinivasa. Manip-
ulation planning with goal sets using constrained trajectory optimization.
In IEEE International Conference on Robotics and Automation, 2011.

[7] Takayuki Murooka, Artur Istvan Karoly, Felix von Drigalski, and
Yoshihisa Ijiri. Simultaneous planning of grasp and motion using
sample regions and gradient-based optimization. In IEEE International
Conference on Automation Science and Engineering (CASE), 2020.

[8] Matanya B. Horowitz and Joel W. Burdick. Combined grasp and
manipulation planning as a trajectory optimization problem. In IEEE
International Conference on Robotics and Automation, 2012.

[9] Jeffrey Ichnowski, Michael Danielczuk, Jingyi Xu, Vishal Satish, and
Ken Goldberg. Gomp: Grasp-optimized motion planning for bin picking.
In IEEE International Conference on Robotics and Automation, 2020.

[10] Jeffrey Mahler, Matthew Matl, Vishal Satish, Michael Danielczuk, Bill
DeRose, Stephen McKinley, and Ken Goldberg. Learning ambidextrous
robot grasping policies. Science Robotics, 2019.

[11] Nikolaus Vahrenkamp, Martin Do, Tamim Asfour, and Rüdiger Dill-
mann. Integrated grasp and motion planning. In IEEE International
Conference on Robotics and Automation, 2010.

[12] Nikolay Jetchev and Marc Toussaint. Trajectory prediction in cluttered
voxel environments. In IEEE International Conference on Robotics and
Automation, 2010.

[13] Mehmet R Dogar, Kaijen Hsiao, Matei Ciocarlie, and Siddhartha
Srinivasa. Physics-based grasp planning through clutter. MIT Press:
Cambridge, MA, USA, 2012.

[14] Dmitry Berenson, Siddhartha S. Srinivasa, Dave Ferguson, Alvaro Col-
let, and James J. Kuffner. Manipulation planning with workspace goal
regions. In IEEE International Conference on Robotics and Automation,
2009.

[15] Kristoffer Bergman, Oskar Ljungqvist, Torkel Glad, and Daniel Axehill.
An optimization-based receding horizon trajectory planning algorithm.
IFAC-PapersOnLine, 2020.

[16] Aditya Mandalika, Oren Salzman, and Siddhartha Srinivasa. Lazy
receding horizon a* for efficient path planning in graphs with expensive-
to-evaluate edges. In International Conference on Automated Planning
and Scheduling, 2018.

	Introduction
	Proposed Approach
	Black-box Optimizer
	Grasp Pose Parametrization
	The Algorithm

	Experiments & Results
	Baseline Approaches
	Experimental Scenes
	Metrics
	Simulation Results
	Real Robot Results

	Discussion
	Conclusions
	References

